Endre søk
Begrens søket
345678 251 - 300 of 364
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 251.
    Nikolova, Ludmila
    et al.
    Department of Mathematics, Kliment Ohridski University of Sofia.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Ushakova, Elena
    Wedestig, Anna
    Weighted Hardy and Pólya-Knopp inequalities with variable limits2007Inngår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 10, nr 3, s. 547-557Artikkel i tidsskrift (Fagfellevurdert)
  • 252. Nikolova, Ludmila Y.
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Zachariades, Theodossios
    A study of some constants for Banach spaces2004Inngår i: Proceedings of the Bulgarian Academy of Sciences, ISSN 0861-1459, Vol. 57, nr 2, s. 5-8Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The authors of the short communication under consideration recall the definitions of the James nonsquare constant $ J(X) $, the Jordan-von Neumann constant $ C_{NJ}(X) $, the generalized James constant $ \beta_{n}(X) $ and the constant $ T_{p(s)}^{(n)}(X) $ of a Banach space $ X $. Many inequalities among these constants are proposed in two theorems, 8 corollaries and several propositions. The proofs of these results can be found in a Research report of Lulea Univ., 2003.

  • 253.
    Nikolova, Ludmila Y.
    et al.
    Department of Mathematics, Sofia University.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Zacharides, Theodossios
    Department of Mathematics, University of Athens, Panepistimiopolis.
    On Clarkson's inequality, type and cotype for the Edmunds-Triebel logarithmic spaces2003Inngår i: Archiv der Mathematik, ISSN 0003-889X, E-ISSN 1420-8938, Vol. 80, nr 2, s. 165-176Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show that the (p, p') Clarkson's inequality holds in the Edmunds-Triebel logarithmic spaces Aq(logA)b,q and in the Zygmund spaces Lp(logL)b(W), for b Î \mathbbR and for suitable 1 £ p £ 2. As a consequence of these results we also obtain some new information about the types and the cotypes of these spaces.

  • 254.
    Nikolova, Ludmila Y.
    et al.
    Department of Mathematics, Sofia University.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Zchariades, Theodossios
    Department of Mathematics, University of Athens, Panepistimiopolis.
    Estimates of some constants equipped with Banach spaces2003Rapport (Annet vitenskapelig)
  • 255.
    Oguntase, James Adedayo
    et al.
    Department of Mathematics, Federal University of Agriculture, Abeokuta.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper. UiT The Arctic University of Norway, Narvik.
    Fabulerin, Olanrewaju Olanrewaju
    Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun.
    Adeagbo-Sheikh, Abdulaziz G.
    Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun.
    Refinements of some limit Hardy-type inequalities via superquadracity2017Inngår i: Publications de l'Institut Mathématique (Beograd), ISSN 0350-1302, E-ISSN 1820-7405, Vol. 102, nr 116, s. 231-240Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Refinements of some limit Hardy-type inequalities are derived anddiscussed using the concept of superquadracity. We also proved that all threeconstants appearing in the refined inequalities obtained are sharp. The naturalturning point of our refined Hardy inequality is 𝑝 = 2 and for this case we haveeven equality.

  • 256.
    Oguntuase, James Adedayo
    et al.
    Department of Mathematics, Federal University of Agriculture, Abeokuta, Ogun State.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Fabelurin, Olabiyi Olanrewaju
    Department of Mathematics, Obafemi Awolowo University. Ile-Ife, Osun State.
    Refinements of Hardy-type inequalities via superquadracity2016Inngår i: Publicationes mathematicae (Debrecen), ISSN 0033-3883, E-ISSN 2064-2849, Vol. 88, nr 3-4, s. 467-476Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some new refinements of Hardy-type integral inequalities are derived, proved and discussed using the concept of superquadratic and subquadratic functions. The results obtained are generalizations and improvements of inequalities of this type in the literature.

  • 257.
    Oguntuase, James
    et al.
    Department of Mathematics, Federal University of Agriculture, Abeokuta.
    Fabelurin, Olanrewaju O
    Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun.
    Adeagbo-Sheikh, Abdulaziz G
    Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Osun.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Time scale Hardy-type inequalities with ‘broken’ exponent p2015Inngår i: Journal of inequalities and applications (Print), ISSN 1025-5834, E-ISSN 1029-242X, Vol. 2015, artikkel-id 2015:17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, some new Hardy-type inequalities involving ‘broken’ exponents are derived on arbitrary time scales. Our approach uses both convexity and superquadracity arguments, and the results obtained generalize, complement and provide refinements of some known results in literature.

  • 258.
    Oguntuase, James
    et al.
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik.
    Okopti, Christopher A.
    Department of Mathematics, University of Education, Winneba.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Allotey, Francis K.A.
    Institute of Mathematical Science, Legon-Accra.
    Weighted multidimensional Hardy and Pólya-Knopp's type inequalities2006Rapport (Annet vitenskapelig)
  • 259.
    Oguntuase, James
    et al.
    Department of Mathematics, University of Agriculture, Abeokuta.
    Okpoti, Christopher A.
    Department of Mathematics, University of Education, Winneba.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Allotey, Francis K.A.
    Institute of Mathemtical Science.
    Multidimensional Hardy type inequalities for p2006Rapport (Annet vitenskapelig)
  • 260. Oguntuase, James
    et al.
    Okpoti, Christopher
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Allotey, Francis
    Weighted multidimensional Hardy type inequalities via Jensen's inequality2007Inngår i: Proceedings of A. Razmadze Mathematical Institute, ISSN 1512-0007, Vol. 144, s. 91-105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The authors prove that Jenson's inequality implies some sharp weighted multidimensional Hardy type inequalities. In particular, their results unify and further extend several results of this type in the literature including the recent results in [A. Čižmešija, J. E. Pečarić and L. E. Persson, J. Approx. Theory 125 (2003), no. 1, 74--84; MR2016841 (2004i:42017); S. Kaijser et al., Math. Inequal. Appl. 8 (2005), no. 3, 403--417; MR2148234 (2006c:26036); S. Kaijser, L. E. Persson and A. Öberg, J. Approx. Theory 117 (2002), no. 1, 140--151; MR1920123 (2003f:26037)]. The main result is obtained in Theorem 3.1. In Section 4, the authors show that some existing results are special cases of the theorems obtained in this paper.

  • 261. Oguntuase, James
    et al.
    Okpoti, Christopher
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Allotey, Francis K.A.
    Institute of Mathematical Science, Legon-Accra.
    Mulitdimensional Hardy type inequalities for p2007Inngår i: Journal of Mathematical Inequalities, ISSN 1846-579X, E-ISSN 1848-9575, Vol. 1, nr 1, s. 1-11Artikkel i tidsskrift (Fagfellevurdert)
  • 262. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Hardy type inequalities via convexity: the jouney so far2010Inngår i: The Australian Journal of Mathematical Analysis and Applications, ISSN 1449-5910, Vol. 7, nr 2, artikkel-id 18Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    It is nowadays well-known that Hardy's inequality (like many other inequalities) follows directly from Jensen's inequality. Most of the development of Hardy type inequalities has not used this simple fact, which obviously was unknown by Hardy himself and many others. Here we report on some results obtained in this way mostly after 2002 by mainly using this fundamental idea.

  • 263. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Levin-Cochran-Lee type inequalities involving many functions2007Inngår i: Proceedings of A. Razmadze Mathematical Institute, ISSN 1512-0007, Vol. 144, s. 107-118Artikkel i tidsskrift (Fagfellevurdert)
  • 264. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Refinement of Hardy's inequalities via superquadratic and subquadratic functions2008Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 339, nr 2, s. 1305-1312Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new refined weighted Hardy inequality for p ≥ 2 is proved and discussed. The inequality is reversed for 1 < p ≤ 2, which means that for p = 2 we have equality. The main tool in the proofs are some new results for superquadratic and subquadratic functions.

  • 265.
    Oguntuase, James
    et al.
    Department of Mathematics, Federal University of Agriculture, Abeokuta.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Time scales Hardy-type inequalities via superquadracity2014Inngår i: Annals of Functional Analysis, ISSN 2008-8752, E-ISSN 2008-8752, Vol. 5, nr 2, s. 61-73Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper some new Hardy-type inequalities on time scales are derived and proved using the concept of superquadratic functions. Also, we extend Hardy-type inequalities involving superquadratic functions with general kernels to the case with arbitrary time scales. Several consequences of our results are given and their connection with recent results in the literature are pointed out and discussed

  • 266. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Čižmešija, Aleksandra
    University of Zagreb.
    Multidimensional Hardy-type inequalities via convexity2008Inngår i: Bulletin of the Australian Mathematical Society, ISSN 0004-9727, E-ISSN 1755-1633, Vol. 77, nr 2, s. 245-260Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Let an almost everywhere positive function Φ be convex for p>1 and p<0, concave for p∈(0,1), and such that Axp≤Φ(x) ≤Bxp holds on ℝ+ for some positive constants A≤B. In this paper we derive a class of general integral multidimensional Hardy-type inequalities with power weights, whose left-hand sides involve Φ (∫0x1⋯∫0xnf(t) dt) instead of [(∫0x1⋯∫0xnf(t) dt]p, while the corresponding right-hand sides remain as in the classical Hardy's inequality and have explicit constants in front of integrals. We also prove the related dual inequalities. The relations obtained are new even for the one-dimensional case and they unify and extend several inequalities of Hardy type known in the literature.

  • 267. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Essel, Emmanuel Kwame
    Multidimensional Hardy-type inequalities with general kernels2008Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 348, nr 1, s. 411-418Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some new multidimensional Hardy-type inequalities involving arithmetic mean operators with general positive kernels are derived. Our approach is mainly to use a convexity argument and the results obtained improve some known results in the literature and, in particular, some recent results in [S. Kaijser, L. Nikolova, L.-E. Persson, A. Wedestig, Hardy-type inequalities via convexity, Math. Inequal. Appl. 8 (3) (2005) 403-417] are generalized and complemented.

  • 268. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Essel, Emmanuel Kwame
    Popoola, B.A.
    Department of Mathematics and Statistics, University of Cape Coast.
    Refined multidimensional Hardy-type inequalities via superquadracity2008Inngår i: Banach Journal of Mathematical Analysis, ISSN 1735-8787, Vol. 2, nr 2, s. 129-139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some new refined multidimensional Hardy-type inequalities for p 2 and their duals are derived and discussed. Moreover, these inequalities hold in the reversed direction when 1 < p 2. The results obtained are based mainly on some new results for superquadratic and subquadratic functions. In particular, our results further extend the recent results in [J.A. Oguntuase and L.-E. Persson, Refinement of Hardy's inequalities via superquadratic and subquadratic functions, J

  • 269. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Pecaric, J.
    Some remarks on a result of Bougoffa2010Inngår i: The Australian Journal of Mathematical Analysis and Applications, ISSN 1449-5910, Vol. 7, nr 2, artikkel-id 60Artikkel i tidsskrift (Fagfellevurdert)
  • 270.
    Oguntuase, James
    et al.
    Department of Mathematics, University of Agriculture, Abeokuta.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Samko, Natasha
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Some Hardy type inequalities with "broken" exponent p2014Inngår i: Journal of Mathematical Inequalities, ISSN 1846-579X, E-ISSN 1848-9575, Vol. 8, nr 3, s. 405-416Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some new Hardy-type inequalities, where the parameter p is permitted to take different values in different intervals, are proved and discussed. The parameter can even be negative in one interval and greater than one in another. Moreover, a similar result is derived for a multidimensional case.

  • 271. Oguntuase, James
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Samko, Natasha
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Sonubi, A.
    Federal University of Agriculture, Abeokuta, Ogun State.
    On the equivalence between some multidimensional Hardy-type inequalities2014Inngår i: Banach Journal of Mathematical Analysis, ISSN 1735-8787, Vol. 8, nr 1Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We prove and discuss some power weighted Hardy-type inequalities on finite and infinite sets. In particular, it is proved that these inequalities are equivalent because they can all be reduced to an elementary inequality, which can be proved by Jensen inequality. Moreover, the corresponding limit (Pólya-Knopp type) inequalities and equivalence theorem are proved. All constants in these inequalities are sharp.

  • 272.
    Oinarov, R.
    et al.
    Faculty of Mathematics and Information Technologies, Eurasian National University, Munaitpasov st., 5, Astana.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Temirkhanova, A.
    Faculty of Mathematics and Information Technologies, Eurasian National University, Munaitpasov st., 5, Astana.
    Weighted inequalities for a class of matrix operators: the case of p≤q2009Inngår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 12, nr 4, s. 891-903Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We prove a new discrete Hardy-type inequality ||A/||q,u ≤ C||f||p,v, where the matrix operator A is defined by (Af) i:= Σj=1i ai,jfj, ai,j ≥ 0. Moreover, we study die problem of compactness of the operator A, and die dual result is stated

  • 273. Oinarov, Ryskul
    et al.
    Okpoti, Christopher
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Weighted inequalities of Hardy type for matrix operators: the case q2007Inngår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 10, nr 4, s. 841-859Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Anon-negative triangularmatrix operator is considered in weighted Lebesgue spaces of sequences. Under some additional conditions on the matrix, some new weight characterizations for discrete Hardy type inequalities with matrix operator are proved for the case 1 < q < p < ∞. Some further results are pointed out

  • 274.
    Oinarov, Ryskul
    et al.
    Eurasian National University, Astana.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Temirkhanova, Ainur
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Boundedness and compactness of a class of matrix operators: the case p2008Rapport (Annet vitenskapelig)
  • 275. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Sinnamon, Gord
    Department of mathematics, Univerity of Western Ontario.
    An equivalence theorem for some integral conditions with general measures related to Hardy's inequality2006Rapport (Annet vitenskapelig)
  • 276. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Sinnamon, Gord
    Department of Mathematics, University of Western Ontario.
    An equivalence theorem for some integral conditions with general measures related to Hardy's inequality2007Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 326, nr 1, s. 398-413Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    It is proved that, besides the usual Muckenhoupt condition, there exist four different scales of conditions for characterizing the Hardy type inequality with general measures for the case 1

  • 277. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Sinnamon, Gord
    Department of Mathematics, University of Western Ontario.
    An equivalence theorem for some integral conditions with general measures related to Hardy's inequality II2006Rapport (Annet vitenskapelig)
  • 278. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Sinnamon, Gord
    University of Western Ontario.
    An equivalence theorem for some integral conditions with general measures related to Hardy's inequality II2008Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 337, nr 1, s. 219-230Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Scales of equivalent weight characterizations for the Hardy type inequality with general measures are proved. The conditions are valid in the case of indices 01. We also include a reduction theorem for transferring a three-measure Hardy inequality to the case with two measures.

  • 279. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Wedestig, Anna
    Scales of weight characterizations for discrete Hardy and Carleman type inequalities2004Inngår i: Function Spaces, Differential Operators and Nonlinear Analysis: proceedings of the conference held in Milovy, Bohemian-Moravian Uplands, May 28 - June 2, 2004 / [ed] Pavel Drábek; Jiří Rákosník, Praha: Institute of Sociology of the Academy of Sciences of the Czech Republic, 2004, s. 236-258Konferansepaper (Fagfellevurdert)
  • 280. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Wedestig, Anna
    Scales of weight characterizations for some multidimensional discrete Hardy and Carleman type inequalities2005Inngår i: Proceedings of A. Razmadze Mathematical Institute, ISSN 1512-0007, Vol. 138, s. 63-84Artikkel i tidsskrift (Fagfellevurdert)
  • 281. Okpoti, Christopher
    et al.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Wedestig, Anna
    Weight characterizations for the discrete Hardy inequality with kernel2006Inngår i: Journal of inequalities and applications (Print), ISSN 1025-5834, E-ISSN 1029-242XArtikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A discrete Hardy-type inequality (∑n=1∞(∑k=1ndn,kak)qun)1/q≤C(∑n=1∞anpvn)1/p is considered for a positive "kernel" d={dn,k}, n,k∈ℤ+, and p≤q. For kernels of product type some scales of weight characterizations of the inequality are proved with the corresponding estimates of the best constant C. A sufficient condition for the inequality to hold in the general case is proved and this condition is necessary in special cases. Moreover, some corresponding results for the case when {an}n=1∞ are replaced by the nonincreasing sequences {an*}n=1∞ are proved and discussed in the light of some other recent results of this type.

  • 282.
    Pales, Zsolt
    et al.
    Lajos Kossuth University.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Hardy-type inequalities for means2004Inngår i: Bulletin of the Australian Mathematical Society, ISSN 0004-9727, E-ISSN 1755-1633, Vol. 70, nr 3, s. 521-528Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we consider inequalities of the form ∞ ∑ M(x 1,..., xn) ≤ C xn, ∞ ∑ n=1 n=1 where M is a mean. The main results of the paper offer sufficient conditions on M so that the above inequality holds with a finite constant C. The results obtained extend Hardy's and Carleman's classical inequalities together with their various generalisations in a new direction

  • 283.
    Pecaric, Josip E.
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Peric, Ivan
    Faculty of Chemical Engineering and Technology, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    A multidimensional integral inequality for monotone functions of several variables1996Inngår i: Acta Scientarum Mathematicarum, ISSN 0001-6969, Vol. 62, nr 3, s. 407-412Artikkel i tidsskrift (Fagfellevurdert)
  • 284.
    Pecaric, Josip E.
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Peric, Ivan
    Faculty of Chemical Engineering, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Integral inequalities for monotone functions1997Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 215, nr 1, s. 235-251Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some integral inequalities for generalized monotone functions of one variable and an integral inequality for monotone functions of several variables are proved. Some applications are presented and discussed.

  • 285.
    Pecaric, Josip E.
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    On Bergh's inequality for quasi-monotone functions1995Inngår i: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 195, nr 2, s. 393-400Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We consider an inverse Hölder type inequality of J. Bergh [Math Z.215 (1994), 205-208] yielding for quasi-concave functions. We prove that this inequality holds in a more general class of functions endowed with two quasimonotonicity growth conditions. Some classes of quasi-monotone functions in mean are introduced and some new Bergh-type inequalities in these classes are proved. Our proofs are short and completely different from that of J. Bergh.

  • 286.
    Pecaric, Josip
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Peric, Ivan
    Faculty of Chemical Engineering and Technology, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    A sharp multidimensional Bergh type inequality2001Inngår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 228, nr 1, s. 155-162Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A sharp multidimensional integral inequality for functions satisfying two quasi-mono-tonicity conditions is proved. This result generalizes Bergh's inequality valid for quasi-concave functions.

  • 287.
    Pecaric, Josip
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Peric, Ivan
    Faculty of Chemical Engineering and Technology, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    On sharpness of some integral inequalities and an integral equation of Volterra type2002Inngår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 5, nr 4, s. 659-670Artikkel i tidsskrift (Fagfellevurdert)
  • 288.
    Pecaric, Josip
    et al.
    Faculty of Textile Technology, University of Zagreb.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Some weighted multidimensional Berwald, Thunsdorff and Borell inequalities1996Inngår i: Mathematica Pannonica, ISSN 0865-2090, Vol. 7, nr 2, s. 281-290Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Some weighted versions of the Berwald, Thunsdorff and Borell inequalities for several variables are stated, proved and discussed. The sharpness of the results and the relations to other generalizations of these inequalities are pointed out

  • 289.
    Peetre, Jaak
    et al.
    Department of Mathematics, University of Stockholm.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    General Beckenbach's inequality with applications1989Inngår i: Function spaces, differential operators and nonlinear analysis: Proceedings of the Summer School of Function Spaces, Differential Operators, and Nonlinear Analysis ... held in Sodankylä, Finnish Lapland, in August 1988 / [ed] Lassi Päivärinta, Harlow: John Wiley & Sons, 1989, s. 125-139Konferansepaper (Fagfellevurdert)
  • 290.
    Peric, Ivan
    et al.
    University of Zagreb, Faculty of Chemical Engineering and Technology.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Wedestig, Anna
    Sharp integral inequalities for C-monotone functions of several variables2000Inngår i: Mathematical Inequalities & Applications, ISSN 1331-4343, E-ISSN 1848-9966, Vol. 3, nr 1, s. 51-62Artikkel i tidsskrift (Fagfellevurdert)
  • 291.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    An exact description of Lorentz spaces1983Inngår i: Acta Scientarum Mathematicarum, ISSN 0001-6969, Vol. 46, nr 1-4, s. 106-116Artikkel i tidsskrift (Fagfellevurdert)
  • 292.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Descriptions of some interpolation spaces in off-diagonal cases1984Inngår i: Interpolation spaces and allied topics in analysis: proceedings of the conference held in Lund, Sweden, August 29-September 1, 1983 / [ed] Michael Cwikel; Jaak Peetre, Berlin: Encyclopedia of Global Archaeology/Springer Verlag, 1984, s. 213-231Konferansepaper (Fagfellevurdert)
  • 293.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Exact relations between some scales of spaces and interpolation1988Inngår i: Function spaces: proceedings of the International Conference, Poznan, August 25-30, 1986 / [ed] Julian Musielak, Teubner , 1988, s. 112-122Konferansepaper (Fagfellevurdert)
  • 294.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Generalizations of some classical inequalities and their applications1990Inngår i: Nonlinear analysis, function spaces and applications: Proceedings of the Spring school held in Roudnice nad Labem, May 21-25, 1990 / [ed] Miroslav Krbec, Leipzig: Teubner , 1990, Vol. 4, s. 127-148Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The paper is a survey (in a number of cases proofs are provided) of various and interesting generalizations and supplements of classical inequalities as well as inequalities important in information theory obtained in the last few years independently by the author and in collaboration with other mathematicians.

  • 295.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Gunnar Sparr: the remarkable mathematician, entrepreneur and ambassador for mathematics2012Inngår i: Analysis for science, engineering and beyond: the tribute workshop in honour of Gunnar Sparr held in Lund, May 8-9, 2008, Heidelberg: Encyclopedia of Global Archaeology/Springer Verlag, 2012, s. 1-22Kapittel i bok, del av antologi (Fagfellevurdert)
  • 296.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Interpolation with a parameter function1986Inngår i: Mathematica Scandinavica, ISSN 0025-5521, E-ISSN 1903-1807, Vol. 59, nr 2, s. 199-222Artikkel i tidsskrift (Fagfellevurdert)
  • 297.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    On a weak-type theorem with applications1979Inngår i: Proceedings of the London Mathematical Society, ISSN 0024-6115, E-ISSN 1460-244X, Vol. 38, nr 3, s. 295-308Artikkel i tidsskrift (Fagfellevurdert)
  • 298.
    Persson, Lars-Erik
    Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Matematiska vetenskaper.
    Real interpolation between some operator ideals1988Inngår i: Function spaces and applications: proceedings of the US-Swedish seminar held in Lund, Sweden, June 15-21, 1986 / [ed] Hans Wallin; Jaak Peetre; Michael Cwikel, Encyclopedia of Global Archaeology/Springer Verlag, 1988, s. 347-362Konferansepaper (Fagfellevurdert)
  • 299. Persson, Lars-Erik
    Relations between regularity of periodic functions and their Fourier series1974Doktoravhandling, med artikler (Annet vitenskapelig)
  • 300. Persson, Lars-Erik
    Relations between summability of functions and their Fourier series1976Inngår i: Acta Mathematica Hungarica, ISSN 0236-5294, E-ISSN 1588-2632, Vol. 27, nr 3-4, s. 267-280Artikkel i tidsskrift (Fagfellevurdert)
345678 251 - 300 of 364
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf