Endre søk
Begrens søket
12345 51 - 100 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Isaksson, Karolina
    et al.
    Luleå tekniska universitet.
    Lindström, Annika
    Luleå tekniska universitet.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förnyelsebar energi i Norrbottens län. Del 2 Bioenergi2003Rapport (Annet vitenskapelig)
  • 52.
    Isaksson, Karolina
    et al.
    Luleå tekniska universitet.
    Lindström, Annika
    Luleå tekniska universitet.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förnyelsebar energi i Norrbottens län. Del 3 Vindkraft2003Rapport (Annet vitenskapelig)
  • 53.
    Isaksson, Karolina
    et al.
    Luleå tekniska universitet.
    Lindström, Annika
    Luleå tekniska universitet.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förnyelsebar energi i Norrbottens län. Del 4 Snökyla2003Rapport (Annet vitenskapelig)
  • 54.
    Jilar, Torbjörn
    et al.
    Department of Building Services Engineering Chalmers University of Technology.
    Nordell, Bo
    Department of Building Services Engineering Chalmers University of Technology.
    Further R & D needs for Swedish solar heating technology 1990–1993: An expert group plan sponsored by the Swedish Council for Building Research1991Inngår i: Energy Conservation in Buildings: The Achievement of 50% Energy Saving: An Environmental Challenge?: Proceedings of NORTHSUN 90, Oxford: Pergamon Press, 1991Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In the 1970's when the Swedish development seriously started, experimental plants were built with the primary aim of testing various technologies. The economical aspects were of secondary interest which, in many cases, resulted in high costs and even in poor quality. In the second plant generation during the 1980's, R & D was concentrated upon lowering costs and enhancing performances for the most promising system concepts. Systems are included here for DHW, and for combined DHW and space heating designed for solar heat coverages between 30% and 80% of the annual heat requirement.

    In the named plan, the state of the art and the R&D needs are described with the focus upon residential heating . Included are systems for multi -family houses, incorporatin groof-integrated solar collectors and short-term heat storage. More developed construction and urban planning methods for roof integration is stressed here, as well as systems flexible for size expansion, e.g. throug connection to an external seasonal heat storage.

    Also included are district heating systems for solar heat supply of upto a couple of hundred flats . Ground or roof based collectors and seasonal heat storage in water-filled pits or ducts in deep ground are considered here . Emphasis is placed on more efficient high temperature flatplate collectors, more simple piping systems and further development of heat insulation and water-sealing methods for pit storage as well as high temperature practical tests for duct storage.

  • 55.
    Johansson, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Berglager: en anläggning för lagring av värme i stor skala1980Inngår i: Energimagasinet, ISSN 0348-9493, nr 4, s. 49-53Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 56.
    Johansson, Bo
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Arbetsvetenskap.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Berglager: en anläggning för lagring av värme i stor skala1980Rapport (Annet vitenskapelig)
  • 57.
    Johansson, Bo
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Arbetsvetenskap.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Berglager: en anläggning för storskalig säsongslagring av värme1980Inngår i: Stadsbyggnad, ISSN 0038-8963, nr 44, s. 39-42Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 58.
    Johansson, Bo
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Arbetsvetenskap.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Berglager: en anläggning för säsongslagring av värme1980Rapport (Annet vitenskapelig)
  • 59.
    Johansson, Bo
    et al.
    Luleå tekniska universitet, Institutionen för ekonomi, teknik och samhälle, Arbetsvetenskap.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Värmelagring i naturmaterial: en sammanställning av metoder för värmekapacitiv lagring i vatten och/eller mineral1980Rapport (Annet vitenskapelig)
  • 60. Johansson, P.
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Snow deposit in rock cavern for seasonal cold storage2000Inngår i: Proceedings: TERRASTOCK 2000, 8th International Conference on Thermal Energy Storage : University of Stuttgart, Germany, August 28th until September 1st, 2000 / [ed] Martin Benner, Stuttgart: Universität Stuttgart , 2000, s. 239-244Konferansepaper (Fagfellevurdert)
  • 61.
    Kharseh, Mohamad
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Altorkmany, Lobna
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Global warming’s impact on the performance of GSHP2011Inngår i: Renewable energy, ISSN 0960-1481, E-ISSN 1879-0682, Vol. 36, nr 5, s. 1485-1491Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Since heating and cooling systems of buildings consume 30e50% of the global energy consumption, increased efficiency of such systems means a considerable reduction in energy consumption. Ground source heat pumps (GSHP) are likely to play a central role in achieving this goal due to their high energy efficient performance. The efficiency of GSHP depends on the ground temperature, heating and cooling demands, and the distribution of heating and cooling over the year. However, all of these are affected by the ongoing climatic change. Consequently, global warming has direct effects on the GSHP performance.Within the framework of current study, heating and cooling demands of a reference building were calculated for different global warming scenarios in different climates i.e. cold, mild and hot climate. The prime energy required to drive the GSHP system is compared for each scenario and two configurations of ground heat exchangers. Current study shows that the ongoing climatic change has significant impact on GSHP systems.

  • 62. Kharseh, Mohamad
    et al.
    Altorkmany, Lobna
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    The effect of global warming on BTES systems2009Inngår i: Abstract book and proceedings : Effstock 2009: 11th International conference on Thermal Energy Storage for Energy Efficiency and Sustainability / [ed] Signhild Gehlin, Stockholm: Energi- och Miljötekniska Föreningen / EMTF Förlag , 2009Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Global warming (GW) is linked to the use of conventional energy, mainly fossil fuels. There is a general understanding that the way to reduce GW is more efficient use of energy and increased use of renewable energy. Heating and cooling of buildings account for more than one third of the world’s primary energy consumption. Using the ground as a heat/cold source means more sustainable heating and cooling. The ongoing GW means that heat is accumulating in air, ground and water. Since BTESs are using the ground as a source of heat and cold, such systems are affected by the increasing ground temperature. Thus, heat is more easily extracted and heating demand is reduced. The warmer ground means that it is more difficult to use the ground as a cold source, while the cooling demand increases. Here, the effect of GW on the performance of BTESs was analyzed for different GW

  • 63. Kharseh, Mohamad
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    First thermal response test in Syria2009Inngår i: Abstract book and proceedings : Effstock 2009: 11th International conference on thermal Energy Storage for Energy Efficiency and Sustainability / [ed] Signhild Gehlin, Stockholm: Energi- och Miljötekniska Föreningen / EMTF Förlag , 2009Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Ground source heat pumps (GSHPs) mean attractive heating and cooling systems. The injection/extraction of thermal energy is obtained by borehole heat exchangers (BHE). Since the GSHP operates at a relatively stable temperature, the coefficient of performance of such systems is higher than that of air source heat pumps. BHEs are drilled to a depth

  • 64. Kharseh, Mohamad
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sustainable H/C systems for chicken farms in Syria2008Inngår i: Global Conference on Global Warming 2008, GCGW-08, Istanbul, Turkey, July 6 - 10, 2008: papers / [ed] I. Dinçer; T.H. Karakoç; A. Hepbaşlı; A. Midilli; C.Ö. Çolpan; S. Gündüz, TUBITAK, The Scientific and Technological Research Council of Turkey , 2008, s. 569-577Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Space heating/cooling systems account for approximately 30% of the global energy consumption. Such systems contribute to global warming by emitting 0.39.1011 MWh of heat and 2.9.1010 tons of CO2. There is a general understanding that the way to reduce global warming is a more efficient use of energy and increased use of renewable energy in all fields of the society. The poultry industry in the Mid East is an important business. There are e.g. 13000 chicken farms in Syria producing 172,000 ton of meat. This industry employs directly almost 150,000 people. The total investment in chicken farming is 130 BSP (2 B€). Even though, the annual mean temperature in Syria is ~15-18 oC the winter temperatures are close to freezing for two months. Since the chickens need a temperature of 21-35 oC, depending on age, approximately 168.103 tons of coal (1170 GWh) is consumed for heating these plants. The chicken farms have no cooling systems since conventional cooling is too expensive. In the summer time, the ambient air temperature in Syria could reach above 45 oC. The elevated temperature inside the farms reduces the chicken growth and lots of chicken die of over heating. Using the ground as a heat source means a sustainable and less expensive heating of the chicken farms. During the summer the resulting colder ground can be used as a source for free cooling, i.e. it can be used directly for cooling of the plants without any cooling machines. This study shows the design and simulated operation of a ground coupled heating/cooling system for a typical chicken farm in Syria. Based on this study the national potential of using such systems was estimated. It shows that the implementation of such ground coupled heating and cooling systems in the Syrian poultry sector would mean increased poultry production and considerable savings in money, energy, and the environment.

  • 65.
    Kharseh, Mohamad
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Sustainable heating and cooling systems for agriculture2011Inngår i: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 35, nr 5, s. 415-422Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Space heating/cooling systems account for approximately 40% of the global energy consumption. Such systems contribute to global warming by emitting 4×1010 MWh of heat and 3×1010 tons of CO2. There is a general understanding that the way to reduce global warming is a more efficient use of energy and increased use of renewable energy in all fields of the society. Ground-coupled heating/cooling systems, which have proven to make huge contributions in reducing energy consumption in Europe and North America, is here applied for poultry industry in Syria, as an example for the Middle East. There are e.g. 13 000 chicken farms in Syria producing 172 000 tons of meat per year. This industry employs directly almost 150 000 people. The total investments in chicken farming are 130 BSP (2 B). The annual mean air temperature in Syria is 15-18°C with winter temperatures close to freezing during two months. The chickens need a temperature of 21-35°C, depending on age, and the heating of all Syrian chicken plants consume 173×103 tons of coal (1196 GWh). In the summer time, the ambient air temperature in Syria could reach above 45°C. The chicken farms have no cooling systems since conventional cooling system is too expensive. The elevated temperature inside the farms reduces the chicken growth and lots of chicken die of overheating. The ground temperature at 10 m depth is roughly equal to the annual mean air temperature. Using the ground as a heat source means a sustainable and less expensive heating of the chicken farms. During the summer, the ground is used as a source for free cooling, i.e. used directly for cooling of the plants without any cooling machines. Current study shows the design and simulated operation of a ground-coupled heating/cooling system for a typical chicken farm in Syria. Performed national potential study showed that the implementation of such ground coupled heating and cooling systems in the Syrian poultry sector would mean increased poultry production and considerable savings in money, energy, and the environment.

  • 66.
    Knapp, Samuel
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Energy-efficient Legionella control that mimics nature and an open-sourcecomputational model to aid system design2017Inngår i: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 127, s. 370-377Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Duck Foot Heat Exchange Model (DFHXM) was developed to aid design of energy efficient thermal pasteurization systems for water but applies to all fluids. Here, the freely available Microsoft Excel model and potential applications are described. The principle imitates countercurrent heat exchange in the feet of ducks which reduces environmental heat losses in cold climates. The designed system pasteurizes the chosen fluid by maintaining a required disinfection temperature for a given time. A heat exchanger preheats incoming fluid before reaching a heating reservoir (electric, solar, gas, etc.). Upon exiting the heater, fluid reenters the same heat exchanger to cool down, simultaneously preheating new incoming fluid. Thus, the design only requires a heater to add the necessary heat not gained in the heat exchanger and to cover environmental heat losses. The DFHXM allows users to input parameters to simulate their specific duck foot (DF) systems and obtain transient and steady-state fluid temperatures within the heat exchanger and heating reservoir. The model has the flexibility to simulate a wide variety of designs, and potential applications to Legionella control and solar-thermal water disinfection are discussed. Reported simulations agreed well with experimental results for transient and steady-state temperatures, the largest discrepancy in steady-state temperatures being 4.6 %.

  • 67.
    Lindblom, Jenny
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Condensation irrigation: a solar desalination system for irrigation and drinking water production2006Inngår i: Full proceedings: World Renewable Energy Congress IX : August 19 - 25, 2006, Florence, Italy, Brighton, 2006Konferansepaper (Fagfellevurdert)
  • 68. Lindblom, Jenny
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Condensation Irrigation: a system for desalination and irrigation2003Inngår i: Proceedings: Futurestock 2003, 9th International Conference on Thermal Energy Storage : Warsaw, Poland, September 1 - 4, 2003, Warszawa: PW Publishing House , 2003, s. 615-619Konferansepaper (Fagfellevurdert)
  • 69.
    Lindblom, Jenny
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Experimental Study of Underground Irrigation by Condensation of Humid Air in Perforated Pipes2012Rapport (Annet vitenskapelig)
    Abstract [en]

    A small scale Condensation Irrigation (CI) system was constructed to investigate the flow patterns of water, air and heat in the soil surrounding a perforated pipe from which water, heat and humid air was transferred. A 0.2 m long cross-section of sand and pipe was used to emulate a two-dimensional section of a CI system. Under these downscaled conditions, the mean irrigation rate in the sand box was 1.03 mm d-1. The major heat transfer mechanism in the sand profile was gas advection, which greatly reduced the sand temperature around the pipe.Nearly 50% of the vapour leaving the airflow inside the pipe, was transported to the sand surface by gas advection.

  • 70.
    Lindblom, Jenny
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Underground condensation of humid air for drinking water production and subsurface irrigation2007Inngår i: Desalination, ISSN 0011-9164, E-ISSN 1873-4464, Vol. 203, nr 1-3, s. 417-434Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Condensation Irrigation (CI) is a combined system for solar desalination and irrigation and/or drinking water production. Solar stills are used for humidifying ambient air flowing over the saline water surface in the still. This warm, humid air is then led into an underground pipe system where it is cooled and vapour precipitates as freshwater on the pipe walls. If drainage pipes are used the condensed water and some of humid air percolate through the pipe perforations and irrigates and aerates the ground. Drinking water can be collected at the pipe endings when using non-perforated pipes. The CI system has attracted attention from several North African countries, and pilot plants are now in operation in Tunisia and Algeria. Mass and heat transfer in the soil around the buried pipes has been modelled to evaluate the theoretical potential for these types of systems and to gain understanding of the mechanisms governing their productivity. For a presumed reference system, the mean water production rate in the drinking water system was 1.8 kg per meter of pipe and day. When using drainage pipes for subsurface irrigation, this number increased to 3.1 kg/m/d, corresponding to 2.3 mm/d of supplied irrigation water.

  • 71. Lindblom, Jenny
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Underground condensation of humid air for irrigation and drinking water production2006Inngår i: World Renewable Energy and Environmental Conference, 2006Konferansepaper (Fagfellevurdert)
  • 72. Lindblom, Jenny
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Water production by underground condensation of humid air2006Inngår i: Desalination, ISSN 0011-9164, E-ISSN 1873-4464, Vol. 189, nr 1-3, s. 248-260Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Condensation irrigation (CI) is a combined system for desalination and irrigation. By evaporating seawater in, for example, solar stills and letting the humidified air transport the formed vapour into an underground pipe system, fresh water will precipitate as the air is cooled by the ground. By using drainage pipes for underground air transportation, perforations in the pipes enable the water to percolate into the soil. This study of Cl focuses on the transport of humid air inside buried plain pipes, where the condensed water stays inside the pipe and may thus be collected at the pipe endings and used for drinking. Numerical simulations of this system result in a mean water production capacity of 1.8 kg/m and day over a 50-m long pipe in a diurnally steady system, though shorter pipes result in a higher mean production. A performed theoretical analysis also indicates that Cl is a promising alternative irrigation method as it enables the use of saline water for irrigation.

  • 73.
    Lundborg, Glenn
    et al.
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Miljöpolicy för Luleå Gymnasieby1997Annet (Annet vitenskapelig)
  • 74.
    Lundin, S.E.
    et al.
    Bjerking Ingenjörsbyrå AB, Uppsala.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Dalenbäck, JO
    Chalmers University of Technology.
    Hellström, Göran
    Sjöstedt, S.
    VVs-Teknik AB, Trollhättan.
    Brinck, B.
    Geo-Konsult B. Brinck AB.
    Solvärme och säsongslagring med borrhål i berg och llågtemperatur för bostadsområdet Anneberg, Danderyd: Förprojektering1998Rapport (Annet vitenskapelig)
    Abstract [en]

    In the planning of a new housing area for 100 dwellings, a pre-design has been made for a solar heating plant. The aim of designing a layout, is to compare the solar system with more conventional heating systems. Developers and contractors are invited for turn-key tenders of the different systems. The single family houses, apartments and service premises in two storey, will have a total floor area of 9000 m{sup 2}. The heating demand is estimated to 1100 MWh/year (120 kWh/m{sup 2}) and the power to 450 kW. A new concept system is designed with low temperatures in all essential parts, but heat pumps are not needed. (1) Flat plate solar collectors, mean temperature 60 deg C; (2) Seasonal bore hole heat store in rock, temperature level 30-45 deg C; (3) Heat distribution network, working temperature 20-80 deg C; (4) Floor heating coils, temperature 25-32 deg C; (5) Peak electrical heaters in houses; (6) Solar DHW and auxiliary individual electrical final heaters. The system has only one general heat fluid with a mixture of water and glycol flowing through solar collectors, store, culverts and the floor heating coils. In all operation modes the heat carrier has the same flow direction and even act as a`buffer volume`. The bedrock consist of outcrops of granite and the GWL is at a depth of 4 m below the ground. In a 120 m investigation bore hole, a so called`Response test` is made in situ of the rock and the duct system. The obtained thermal results are: Conductivity{lambda}= 4.1 W/m,K, Capacity C 0.6 kWh/K, m{sup 3}, Resistance total of PEM-tubes and rock mass R= 0.02 K/(W/m). The investment cost have been calculated to 5.4 mil SEK ({approx} 0.7 mil USD) excl. culvert, floor heating system, DHW tanks/heaters. The annual capital and running costs are 0.73 mil SEK (0.1 mil USD), calculated with an interest rate of 6% over 25 years (0.078). The total system heating cost will be 0.68 SEK/kWh (0.1 USD/kWh). With received EU- and -governmental subsides up to 2.0 mil SEK the heating costs drop to 0.54 SEK/kWh (0.07 USD/kWh). Solar energy is by that means cost-effective to conventional alternatives as district heating, bio-fuel block centrals, ground heat pumps or 100% electrical heating. The solar heating project seems in all respects possible to carry through - but the final decision is taken of the market response

  • 75.
    Lundin, Sven-Erik
    et al.
    Bjerking AB.
    Dalenbäck, Jan-Olof
    Chalmers tekniska högskola.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Hellström, Göran
    Lunds Tekniska Högskola.
    Brinck, Björn
    Geokonsult AB.
    Magnusson, Jan
    ÅF-VVS Projekt AB.
    Ringblom, Lennart
    ÅF-VVS Projekt AB.
    Appel, Carl-Henrik
    PEAB.
    Westin, Sune
    HSB Bostad.
    Solvärmesystem och borrhålsvärmelager för bostadsområde Anneberg, Danderyd: Systemval, projektering och byggande2002Rapport (Annet (populærvitenskap, debatt, mm))
  • 76.
    Margen, P.
    et al.
    Margen-Consult.
    Hellström, Göran
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Åberg, B.
    Åbyhammar, Tomas
    Hydrock: värmelager i spräckt berg1984Rapport (Annet (populærvitenskap, debatt, mm))
  • 77. Nilsson, Ragnar
    et al.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Försök med turbulensminskning1979Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
    Abstract [sv]

    Ventilationsbuller i gruvor är ett stort arbetsmiljöproblem. Turbulens i luftledningarna orsakar en del av detta buller. Genom att klä insidan av ett ventilationsrör med en mjuk hårig matta har vi lyckats laminera flödet, varför turbulensbuller inte kan uppstå.I våra försök med turbulensminskning fann vi många närliggande problem inom helt andra områden. Vi hoppas att våra undersökningar kan bidra till lösningar för både ventilationsbuller och närliggande problem.

  • 78.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    A borehole heat store in rock at the University of Luleå: the Lulevärme project 1982-19881990Rapport (Annet vitenskapelig)
  • 79.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    A large-scale borehole heat store during five years of operation1988Inngår i: ISRM Symposium / [ed] M. Romana, Rotterdam, 1988, s. 583-587Konferansepaper (Annet vitenskapelig)
    Abstract [en]

    The borehole heat store in Luleå, Sweden, was built in 1982/83. The store consists of 115, 000 m3 of chrystalline rock. The rock volume is perforated by 120 boreholes to a depth of 65 m of which 3.5 m penetrate the soil. The total active borehole length is 7380 m. The rock temperature varies between 30  to 60 °c during the year. During six month of the summer season 2.0 GWh is charged of wich 50% is recovered during the winter season. The extracted heat is utilized for space heating of one of the university buildings.

    The research project includes evaluation of the construction work and five years of operation. The measurement programme was completed in May 1988. A final report will be published in the autumn of 1988. The storage system is now in its 6th charging period.

    This paper gives a brief description of the plant. Experiences from the operation period and operation data of the plant are given.

  • 80.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Ankfot inspirerar till energisnål vattenrening2013Inngår i: Energi och miljö, ISSN 1101-0568, Vol. 2013, nr 2, s. 52-Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    Den enda riktigt bra metoden i dag för bekämpning av legionella och andra bakterier i vatten är att koka vattnet eller höja vattentemperaturen så att bakterierna dör. Nackdelen med detta är att det kräver mycket energi. N u föreslår forskare en ny effektivare metod som går ut på att efterlikna värmeöverföringen i fåglars ben.

  • 81.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    ANNEX 8 Implementing underground thermal energy storage IEA energy conservation through energy storage (ECES)1997Inngår i: 7th International conference on thermal energy storage, Megastock ´97: Sapporo Japan, 18-21 June 1997 / [ed] Kiyoshi Ochifuji, Sapporo: Center for Applied Ethics and Philosophy, Hokkaido University, 1997Konferansepaper (Annet vitenskapelig)
  • 82.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Applications of volume-expansion of freezing water1999Inngår i: Circumpolar change: building a future on experiences from the past : proceeding / [ed] Håkan Myrlund; Lars Carlsson, Luleå tekniska universitet, 1999, s. 264-274Konferansepaper (Annet vitenskapelig)
  • 83.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Att uppskatta myggor1994Inngår i: Nämnaren : tidskrift för matematikundervisning, ISSN 0348-2723, Vol. 21, nr 1, s. 30-31Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
    Abstract [sv]

    Det är allmänt känt att det finns gott om mygg i Norrbotten, särskilt under sommaren. Men, hur många finns det? Finns det lika många kilo mygg som kilo människor? Artikeln handlar om rimlighetsbedömning och storleksuppskattning.

  • 84.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borehole heat store design optimization1994Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Seasonal heat storage, which is used to balance the supply of and demand for heat, e.g. in district heating networks, is necessary for the large-scale utilization of solar heat. The aim of this thesis was to study and develop seasonal heat storage to a point where it, if possible, would be an option in Swedish heating systems. Initial theoretical calculations indicated that the borehole heat store was feasible for seasonal heat storage. In the borehole heat store sensible heat is stored in the bedrock. The bedrock is penetrated by evenly spaced vertical boreholes, which are drilled within a square or circular land area. The holes work as heat exchangers between a heat carrier (normally water), which is pumped through the pipe system of the boreholes and the storage volume. Performed measurements in a pilot plant verified the predicted thermal behaviour of the store. A pre-design of a large-scale heat store, within the University area, was performed. After assuming the operation cycle and the properties of the store, the thermal behaviour of the Luleå heat store was simulated. The construction work of this large-scale borehole heat store (120,000 m 3) was studied in detail and the performance was evaluated during the first five years of operation. It was found that there were several short-comings in design, construction and operation. The operation of the heat pumps caused problems. The borehole pipes were incorrectly installed, which decreased the charged heat by 23% and recovered heat by about 34%. Without changing the storage task the store could have been built at a cost of 4.5 MSEK instead of 6.3 MSEK. A model was developed to determine the optimum design of borehole heat stores. The optimum design was defined as the design that fulfils the storage task at a minimum annual storage cost, i.e. the sum of the annual costs of the investment, operation, maintenance and heat loss. The optimum and actual designs of three stores were evaluated and compared. The more recently constructed plants differed less from the optimum design than the oldest plant, situated in Luleå. The main reason was the increasing engineering experience, which influenced the design of the later stores. Typical data for the optimum design are drilling depths of 125 m and a borehole spacing of 4 m. In a 1.6 GWh store, 65 boreholes result in a storage volume of about 125,000 m3. The specific construction cost, which decreases with increasing heat extraction capacity, is 1.50 SEK/ KWh or 20 SEK/m3 at an heat extraction capacity of 7 GWh. The annuity method (6%, 25 y) was used to calculate the annual investment cost, which stood for approximately 65% of the total annual storage cost. The sensitivity of the different parameters was investigated with the optimization model. It was demonstrated that the technical design of the store was greatly influenced by the cost parameters. For example, small changes in the drilling cost could mean a very different design. It was also found that it was cost-effective to investigate the soil depth and the rock thermal conductivity in detail before the design of the borehole heat store was performed.

  • 85.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borehole heat store design optimization: the SmartStore model1994Inngår i: Thermal energy storage: better economy, environment, technology ; proceedings ; August 22 - 25, 1994, Espoo, Finland / CALORSTOCK '94, 6th International Conference on Thermal Energy Storage / [ed] M.T. Kangas, Helsinki: Helsinki University of Technology , 1994, s. 245-254Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The SmartStore model was developed to determine the optimum design of borehole heat stores as a function of different design parameters. The optimum design is defined as the design that achieves the storage task with a minimum annual storage cost. The annual storage cost is the sum of annual costs of investment, operation, maintenance and heat loss. The PC-model has a user-friendly lay-out and gives a fast pre-design of borehole heat stores. In this article the model is briefly described. It is also shown that the technical design of the store is influenced by varying technical properties of the storage volume, but also by the cost of heat.

  • 86.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borrhål för korttidslagring1994Inngår i: Byggforskning : Byggforskningsrådets tidning för en bättre byggd miljö, ISSN 1102-3686, nr 5, s. 15-17Artikkel i tidsskrift (Annet (populærvitenskap, debatt, mm))
  • 87.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borrhålsvärmelager: Förstudie och fältförsök1986Licentiatavhandling, med artikler (Annet vitenskapelig)
  • 88.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borrhålsvärmelager i berg vid Högskolan i Luleå: anläggnings- och driftserfarenheter : projekt Luleåvärme 1982-19851986Rapport (Annet vitenskapelig)
  • 89.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Borrhålsvärmelager i berg vid Högskolan i Luleå: slutrapport - projekt lulevärme 1982-19881989Rapport (Annet vitenskapelig)
  • 90.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Bottenuppspräckning av borrhålsvärmelager1984Inngår i: Borrhålsvärmelager: temadag vid Högskolan i Luleå 21 november 1984 / [ed] Bo Nordell, Högskolan i Luleå , 1984, s. 162-164Konferansepaper (Annet vitenskapelig)
  • 91.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Condensation of Humidity onto a Snow Covered Roof1990Inngår i: Nordic Hydrology, ISSN 0029-1277, E-ISSN 1996-9694, Vol. 21, nr 4-5, s. 287-298Artikkel i tidsskrift (Fagfellevurdert)
  • 92.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Development of prototype for ice thickness measurements1995Rapport (Annet vitenskapelig)
  • 93.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Dimensionering av klimatsystem vid Hietalas växthus i Övertorneå.1987Rapport (Annet vitenskapelig)
    Abstract [en]

    The Hietala Greenhouse is used for cucumber production at the Polar Circle in Sweden. The problem was that the greenhouse temperature varied too much over the day (50C) and that the humidity fell out because of low night temperatures. The suggested system solves this problem by extraction hot humid air under the ceiling during daytime, and pumping this air into drainage pipe in the ground under the cucumbers. Ten the ground cools the air and the humidity falls out in the pipe. Part of the air, and the water, flow through the holes of the drainage pipe into the surrounding soil. When the air leaves the pipe it has been cooled from initial 55C down to about 25. This system was later realized and used for about 20 years before the greenhouse was abandoned.

  • 94.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Energilagring: Aktuell FoU1999Annet (Annet vitenskapelig)
  • 95.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Entropiproduktion vid istryckgenererat arbete1989Rapport (Annet (populærvitenskap, debatt, mm))
    Abstract [en]

    The Icy-Rider is a go-cart that is driven by the pressure volume work of freezing water. Here, the thermodynanics of the system is investigated.

  • 96.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förnyelsebar energi i Norrbottens län: Sammanfattning av Del 1-4. Solenergi, Bioenergi, Vindkraft och Snökyla2003Rapport (Annet vitenskapelig)
  • 97.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förstudie av isenergins användningsområden1989Rapport (Annet vitenskapelig)
  • 98.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Förstudie av isenergins användningsområden1989Rapport (Annet vitenskapelig)
  • 99.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Geoenergin i samhället: En viktig del i en hållbar energiförsörjning : forskningsläget2012Inngår i: Geoenergin i Samhället: En viktig del i en hållbar energiförsörjning, Lund: GEOTEC , 2012, s. 61-66Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    With the fi rst oil crises in the beginning of 1970, the Swedish governmentinvested in, at that time, innovative technology using the underground asa source of energy for space heating. By developing these shallow geothermalsystems the goal was to decrease the dependence of oil.The result of these efforts is that some 25 % of the world’s total amount ofshallow geothermal systems is placed in Sweden. Today, heat and cold derivedfrom the underground is the third largest renewable energy source inSweden. It has been estimated that the shallow geothermal systems contributewith 11–12 TWh to the heat supply in Sweden.There is a lack of proper data for calculations of how much thermal energyis captured from the underground. Hence, the statistics shown in this reportare based on reasonable estimates, having the sales of heat pumps as aprime source of information.The Swedish Energy Agency chose not to report the domestic contributionfrom small-scale geothermal plants in Swedish statistics. Only the fi guresfrom the heat pumps in the district heating systems are reported. On theother hand in the statistic reports to EU, the Agency calculates with a significant amount from small-scale ground source heat pumps. This indicatesthat shallow geothermal should be more properly dealt with in the energysupply statistics.The geothermal storage systems are used for combined heating and coolingof commercial and institutional buildings, often in a large scale. Someof these systems are also applied to district heating and cooling as well asin some industries. The unique technology to store thermal energy in theunderground from one season to another makes a great positive impact tothe economy and to the climate.From an environmental perspective, shallow geothermal should be equivalentto solar energy and some other renewables. The electricity needed torun the plants should preferably be evaluated based on current directivesfor calculations of carbon dioxide emissions within each country.Shallow geothermal systems are most often reasonable profi table, lookedupon as short term repayment of the investment. In addition, the user isless sensitive for price changes on the energy market. This is due to thehigh effi ciency of such systems. Evaluated with LCC-analyzes, shallowgeothermal shows even higher profi ts. This is a result of low operatingcosts, low maintenance cost and a long life span.

  • 100.
    Nordell, Bo
    Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Arkitektur och vatten.
    Geothermal heat: the new nationwide movement2005Inngår i: Swedish Research for Sustainability, ISSN 1650-576X, nr 1, s. 4-5Artikkel i tidsskrift (Annet vitenskapelig)
12345 51 - 100 of 201
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf