Endre søk
Begrens søket
1234 51 - 100 of 197
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Gardner, J.L.
    et al.
    Stewart Radiance Laboratory, Bedford.
    Funke, B.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Mlynczak, M.G.
    Science Directorate, NASA Langley Research Center, Hampton.
    López-Puertas, M.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Martin-Torres, Javier
    Analytical Services and Materials Inc., Hampton.
    III, J.M. Russell
    Center for Atmospheric Sciences, Hampton University.
    Miller, S.M.
    Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base, Massachusetts.
    Sharma, R.D.
    Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base, Massachusetts.
    Winick, J.R.
    Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base, Massachusetts.
    Comparison of nighttime nitric oxide 5.3 μm emissions in the thermosphere measured by MIPAS and SABER2007Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 112, nr A10Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A comparative study of nitric oxide (NO) 5.3 μm emissions in the thermosphere measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) spectrometer and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) radiometer satellite instruments was conducted for nighttime data collected on 14 June 2003. The agreement between the data sets was very good, within ∼25% over the entire latitude range studied from −58° to + 4°. The MIPAS and SABER data were inverted to retrieve NO volume emission rates. Spectral fitting of the MIPAS data was used to determine the NO(v = 1) rotational and spin-orbit temperatures, which were found to be in nonlocal thermodynamic equilibrium (non-LTE) above 110 km. Near 110 km the rotational and spin-orbit temperatures converged, indicating the onset of equilibrium in agreement with the results of non-LTE modeling. Because of the onset of equilibrium the NO rotational and spin-orbit temperatures can be used to estimate the kinetic temperature near 110 km. The results indicate that the atmospheric model NRLMSISE-00 underestimates the kinetic temperature near 110 km for the locations investigated. The SABER instrument 5.3 μm band filter cuts off a significant fraction of the NO(Δv = 1) band, and therefore modeling of NO is necessary to predict the total band radiance. The needed correction factors were directly determined from the MIPAS data, providing validation of the modeled values used in SABER operational data processing. The correction factors were applied to the SABER data to calculate densities of NO(v = 1). A feasibility study was also conducted to investigate the use of NO 5.3 μm emission data to derive NO(v = 0) densities in the thermosphere.

  • 52.
    Gellert, Uwe
    et al.
    Universität Hamburg, Freie Universität Berlin.
    III, Benton Clark
    Space Science Institute, Boulder, Colorado.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    In Situ Compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA's Mars Rovers2015Inngår i: Elements, ISSN 1811-5209, E-ISSN 1811-5217, Vol. 11, nr 1, s. 39-44Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Alpha Particle X-ray Spectrometer (APXS) is a soda can–sized, arm-mounted instrument that measures the chemical composition of rocks and soils using X-ray spectroscopy. It has been part of the science payload of the four rovers that NASA has landed on Mars. It uses 244Cm sources for a combination of PIXE and XRF to quantify 16 elements. So far, about 700 Martian samples from about 50 km of combined traverses at the four landing sites have been documented. The compositions encountered range from unaltered basaltic rocks and extensive salty sandstones to nearly pure hydrated ferric sulfates and silica-rich subsurface soils. The APXS is used for geochemical reconnaissance, identification of rock and soil types, and sample triage. It provides crucial constraints for use with the mineralogical instruments. The APXS data set allows the four landing sites to be compared with each other and with Martian meteorites, and it provides ground truth measurements for comparison with orbital observations.

  • 53.
    Goetz, Walter
    et al.
    Max-Planck-Institut für Solar System Research.
    Madsen, Morten B.
    Niels Bohr Institute, University of Copenhagen.
    Edgett, Kenneth S.
    Malin Space Science Systems, San Diego.
    Clark, Benton C.
    Space Science Institute, Boulder, Colorado.
    Meslin, Pierre-Yves
    IRAP, CNRS/UPS, Toulouse.
    Blaney, Diana L.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Bridges, Nathan
    Applied Physics Laboratory, Laurel, Maryland.
    Fisk, Martin
    University of Oregon, Corvallis, Oregon.
    Hviid, Stubbe F.
    DLR, Berlin.
    Kocurek, Gary
    University of Texas, Austin.
    Lasue, Jeremie
    IRAP, CNRS/UPS, Toulouse.
    Maurice, Sylvestre
    IRAP, CNRS/UPS, Toulouse.
    Newsom, Horton
    University of New Mexico, Albuquerque.
    Renno, Nilton
    University of Michigan.
    Rubin, David M.
    U.S. Geological Survey, Flagstaff.
    Sullivan, Robert
    Cornell University, Ithaca.
    Wiens, Roger C.
    Los Alamos National Laboratory.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Compositional Variations of Rocknest Sand, Gale Crater, Mars2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 54.
    Grotzinger, J.P.
    et al.
    California Institute of Technology, Pasadena, Division of Geological and Planetary Sciences, California Institute of Technology.
    Crisp, J.A.
    Indiana University, Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Vasavada, Ashwin
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Curiosity's Mission of Exploration at Gale Crater, Mars2015Inngår i: Elements, ISSN 1811-5209, E-ISSN 1811-5217, Vol. 11, nr 1, s. 19-26Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Landed missions to the surface of Mars have long sought to determine the material properties of rocks and soils encountered during the course of surface exploration. Increasingly, emphasis is placed on the study of materials formed or altered in the presence of liquid water. Placed in the context of their geological environment, these materials are then used to help evaluate ancient habitability. The Mars Science Laboratory mission—with its Curiosity rover—seeks to establish the availability of elements that may have fueled microbial metabolism, including carbon, hydrogen, sulfur, nitrogen, phosphorus, and a host of others at the trace element level. These measurements are most valuable when placed in a geological framework of ancient environments as interpreted from mapping, combined with an understanding of the petrogenesis of the igneous rocks and derived sedimentary materials. In turn, the analysis of solid materials and the reconstruction of ancient environments provide the basis to assess past habitability.

  • 55.
    Grotzinger, J.P.
    et al.
    Division of Geological and Planetary Sciences, California Institute of Technology.
    Sumner, D.Y.
    Department of Earth and Planetary Sciences, University of California, Davis.
    Kah, L.C.
    Department of Earth and Planetary Sciences, University of Tennessee, Knoxville.
    Stack, K.
    Division of Geological and Planetary Sciences, California Institute of Technology.
    Gupta, S.
    Department of Earth Science and Engineering, Imperial College London.
    Edgar, L.
    School of Earth and Space Exploration, Arizona State University.
    Rubin, D.
    U.S. Geological Survey, Santa Cruz.
    Lewis, K.
    Department of Geosciences, Princeton University, New Jersey.
    Schieber, J.
    Indiana University, Department of Geological Sciences, Bloomington.
    Mangold, N.
    Laboratoire Planétologie et Géodynamique de Nantes, LPGN/CNRS and Université de Nantes.
    Milliken, R.
    Department of Geological Sciences, Brown University, Providence.
    Conrad, P.G.
    NASA Goddard Space Flight Center.
    DesMarais, D.
    Department of Space Sciences, NASA Ames Research Center, Moffett Field.
    Farmer, J.
    School of Earth and Space Exploration, Arizona State University, Tempe.
    Siebach, K.
    Division of Geological and Planetary Sciences, California Institute of Technology.
    III, F. Calef
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Hurowitz, J.
    Department of Geosciences, State University of New York, Stony Brook.
    McLennan, S.M.
    Department of Geosciences, State University of New York, Stony Brook.
    Ming, D.
    Jacobs Technology, NASA Johnson Space Center.
    Vaniman, D.
    Planetary Science Institute, Tucson.
    Crisp, J.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Vasavada, A.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Edgett, K.S.
    Malin Space Science Systems.
    Malin, M.
    Malin Space Science Systems.
    Blake, D.
    Department of Space Sciences, NASA Ames Research Center, Moffett Field.
    Yingst, A
    Planetary Science Institute, Tucson.
    A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars2014Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 343, nr 6169, artikkel-id 1242777Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.

  • 56.
    Guzewich, Scott D.
    et al.
    NASA Goddard Spaceflight Center,Greenbelt, MD, USA.
    Lemmon, M.
    Space Science Institute, College Station, TX, USA.
    Smith, C.L
    Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada.
    Martínez, G.
    College of Engineering, University of Michigan, Ann Arbor, MI, USA.
    de Vicente‐Retortillo, Á.
    College of Engineering, University of Michigan, Ann Arbor, MI, USA.
    Newman, C. E.
    Aeolis Research, Pasadena, CA, USA.
    Baker, M.
    Department of Earth and Planetary Science, The Johns Hopkins University, Baltimore, MD, USA.
    Campbell, C.
    Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada.
    Cooper, B.
    Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada.
    Gómez‐Elvira, J.
    Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
    Harri, A.‐M.
    Finnish Meteorological Institute, Helsinki, Finland.
    Hassler, D.
    Southwest Research Institute, Boulder, CO, USA.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Instituto Andaluz de Ciencias de la Tierra (CSIC‐UGR), Armilla, Granada, Spain.
    McConnochie, T.
    Department of Astronomy, University of Maryland, College Park, MD, USA.
    Moores, J. E.
    Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada.
    Kahanpää, H.
    Finnish Meteorological Institute, , Helsinki, Finland; School of Electrical Engineering, Aalto University, , Espoo, Finland.
    Khayat, A.
    NASA Goddard Spaceflight Center, Greenbelt, MD, USA;CRESST II and Department of Astronomy, University of Maryland, College Park, MD, USA.
    Richardson, M. I.
    Aeolis Research, Pasadena, CA, USA.
    Smith, M.D
    NASA Goddard Spaceflight Center, Greenbelt, MD, USA.
    Sullivan, R.
    Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA.
    de la Torre Juarez, M.
    Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY, USA.
    Vasavada, A.R
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
    Viúdez‐Moreiras, D.
    Centro de Astrobiología (INTA-CSIC), Madrid, Spain.
    Zeitlin, C.
    Leidos, Houston, TX, USA.
    Zorzano Mier, María-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm2019Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 46, nr 1, s. 71-79Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mars Science Laboratory Curiosity rover observations of the 2018/Mars year 34 global/planet‐encircling dust storm represent the first in situ measurements of a global dust storm with dedicated meteorological sensors since the Viking Landers. The Mars Science Laboratory team planned and executed a science campaign lasting approximately 100 Martian sols to study the storm involving an enhanced cadence of environmental monitoring using the rover's meteorological sensors, cameras, and spectrometers. Mast Camera 880‐nm optical depth reached 8.5, and Rover Environmental Monitoring Station measurements indicated a 97% reduction in incident total ultraviolet solar radiation at the surface, 30K reduction in diurnal range of air temperature, and an increase in the semidiurnal pressure tide amplitude to 40 Pa. No active dust‐lifting sites were detected within Gale Crater, and global and local atmospheric dynamics were drastically altered during the storm. This work presents an overview of the mission's storm observations and initial results.

  • 57.
    Guzewich, Scott D.
    et al.
    NASA Goddard Spaceflight Center, Greenbelt, MD.
    Newman, C. E.
    Aeolis Research, Pasadena, CA.
    Smith, M. D.
    NASA Goddard Spaceflight Center, Greenbelt, MD.
    Moores, J. E.
    Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada.
    Smith, C. L.
    Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada.
    Moore, C.
    Department of Earth and Space Science and Engineering, York University, Toronto, ON, Canada.
    Richardson, M. I.
    Aeolis Research, Pasadena, CA.
    Kass, D.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
    Kleinböhl, A.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
    Mischna, M.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
    Martín-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Granada, Spain.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Madrid, Spain.
    Battalio, M.
    Department of Atmospheric Sciences, Texas A&M University, College Station, TX.
    The Vertical Dust Profile over Gale Crater, Mars2017Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 122, nr 12, s. 2779-2792Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We create a vertically coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory (MSL) Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile.

    We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the “solsticial pause” in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an “absolute” high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  • 58.
    Gómez-Elvira, J.
    et al.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Armiens, C.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Castañer, L.
    Universidad Politécnica de Cataluña.
    Domínguez, M.
    Universidad Politécnica de Cataluña.
    Genzer, M.
    FMI-Arctic Research Centre, Sodankylä.
    Gómez, F.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Haberle, R.
    NASA Ames Research Center.
    Harri, A. M.
    FMI-Arctic Research Centre, Sodankylä.
    Jiménez, V.
    Universidad Politécnica de Cataluña.
    Kahanpää, H.
    FMI-Arctic Research Centre, Sodankylä.
    Kowalski, L.
    Universidad Politécnica de Cataluña.
    Lepinette, A.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Martín, J.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Martínez-Frías, J.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    McEwan, I.
    Ashima Research, Pasadena.
    Mora, L.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Moreno, J.
    EADS-CRISA.
    Navarro, S.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Pablo, M. A. De
    Universidad de Alcalá de Henares.
    Peinado, V.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Peña, A.
    EADS-CRISA.
    Polkko, J.
    FMI-Arctic Research Centre, Sodankylä.
    Ramos, M.
    Universidad de Alcalá de Henares.
    Renno, N. O.
    Michigan University.
    Ricart, J.
    Universidad Politécnica de Cataluña.
    Zorzano, María Paz
    Centro de Astrobiología (CSIC-INTA).
    Martin-Torres, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    REMS: The environmental sensor suite for the Mars Science Laboratory rover2012Inngår i: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 170, nr 1-4, s. 583-640Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures. © 2012 Springer Science+Business Media B.V.

  • 59.
    Gõmez-Elvira, Javier
    et al.
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Armiens, Carlos
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Carrasco, Isaias
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Genzer, Maria
    Finnish Meteorological Institute, Helsinki.
    Gómez, Felipe
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Haberle, Robert M.
    NASA Ames Research Center, Moffett Field, CA.
    Hamilton, Victoria E.
    Southwest Research Institute, Boulder, CO.
    Harri, Ari-Matti
    Finnish Meteorological Institute, Helsinki.
    Kahanpää, Henrik
    Finnish Meteorological Institute, Helsinki.
    Kemppinen, Osku
    Finnish Meteorological Institute, Helsinki.
    Lepinette, Alain
    Centro de Astrobiología (CSIC - INTA), Torrejón de Ardoz, Madrid.
    Martin-Soler, Javier
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Martínez-Frías, Jesús
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Mischna, Michael A.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
    Mora, Luis
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Navarro, Sara
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Newman, Claire E.
    Ashima Research Inc.
    De Pablo, Miguel Ángel
    Universidad de Alcalá de Henares, Alcalá de Henares.
    Peinado, Verõnica
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Polkko, Jouni
    Finnish Meteorological Institute, Helsinki.
    Rafkin, Scot C Randell
    Southwest Research Institute, Boulder, CO.
    Ramos, Miguel A.
    Universidad de Alcalá de Henares, Alcalá de Henares.
    Rennó, Nilton O.
    University of Michigan, Ann Arbor, MI.
    Richardson, Mark E.
    Ashima Research, Pasadena, CA.
    Rodríguez Manfredi, José Antonio
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Romeral Planellõ, Julio J.
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Sebastián, Eduardo M.
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    De La Torre Juárez, Manuel
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Torres, Josefina
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Urquí, Roser
    Ingeniería de Sistemas Para la Defensa de España, Madrid.
    Vasavada, Ashwin R
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.
    Verdasca, José
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Zorzano, María Paz
    Centro de Astrobiología (CSIC-INTA), Torrejõn de Ardoz, Madrid.
    Curiosity's rover environmental monitoring station: Overview of the first 100 sols2014Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 119, nr 7, s. 1680-1688Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the first 100 Martian solar days (sols) of the Mars Science Laboratory mission, the Rover Environmental Monitoring Station (REMS) measured the seasonally evolving diurnal cycles of ultraviolet radiation, atmospheric pressure, air temperature, ground temperature, relative humidity, and wind within Gale Crater on Mars. As an introduction to several REMS-based articles in this issue, we provide an overview of the design and performance of the REMS sensors and discuss our approach to mitigating some of the difficulties we encountered following landing, including the loss of one of the two wind sensors. We discuss the REMS data set in the context of other Mars Science Laboratory instruments and observations and describe how an enhanced observing strategy greatly increased the amount of REMS data returned in the first 100 sols, providing complete coverage of the diurnal cycle every 4 to 6 sols. Finally, we provide a brief overview of key science results from the first 100 sols. We found Gale to be very dry, never reaching saturation relative humidities, subject to larger diurnal surface pressure variations than seen by any previous lander on Mars, air temperatures consistent with model predictions and abundant short timescale variability, and surface temperatures responsive to changes in surface properties and suggestive of subsurface layering. Key Points Introduction to the REMS results on MSL mission Overiview of the sensor information Overview of operational constraints

  • 60.
    Haberle, R. M.
    et al.
    NASA Ames Research Center.
    Gómez-Elvira, J.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Juarez, M. de la Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Harri, A.
    Finnish Meteorological Institute, Helsinki.
    Hollingsworth, J. L.
    NASA Ames Research Center.
    Kahanpää, H.
    Finnish Meteorological Institute, Helsinki.
    Kahre, M. A.
    NASA Ames Research Center.
    Lemmon, M.T.
    Texas A&M University, College Station.
    Martin-Torres, Javier
    Instituto Andaluz de Ciencias de la Tierra, Granada.
    Mischna, M.A.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Moore, J.E.
    York University, Toronto.
    Newman, C.E.
    Ashima Research, Pasadena.
    Rafkin, S.C.
    Southwest Research Institute, Boulder.
    Renno, N.O.
    University of Michigan, Ann Arbor.
    Richardson, M.I.
    Ashima Research, Pasadena.
    Thomas, P.C.
    Cornell University, Ithaca.
    Vasavada, A.R.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Wong, M.H.
    University of Michigan, Ann Arbor.
    Rodríguez-Manfredi, J.A.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Secular Climate Change on Mars: An Update Using MSL Pressure Data2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat rates within the SPRC have led to the suggestion that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (19 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2 Mars years ago were found to be consistent with these loss rates. Here we compare surface pressure data from the MSL mission with that from Viking Lander 2 (VL-2) to determine if the trend continues. We use VL-2 because it is at the same elevation as MSL (-4500 m). However, based on the first 100 sols of data there does not appear to be a significant difference between the dynamically adjusted pressures of the two landers. This result implies one of several possibilities: (1) the cap is not losing mass and the difference between the Viking and Phoenix results is due to uncertainties in the measurements; (2) the cap has lost mass between the Viking and Phoenix missions but it has since gone back to the cap or into the regolith; or (3) that our analysis is flawed. The first possibility is real since post-mission analysis of the Phoenix sensor has shown that there is a 3 (±2) Pa offset in the data and there may also be uncertainties in the Viking data. The loss/gain scenario for the cap seems unlikely since scarps continue retreating, and regolith uptake implies something unique about the past several Mars years. That our analysis is flawed is certainly possible owing to the very different environments of the Viking and MSL landers. MSL is at the bottom of a deep crater in the southern tropics (~5°S), whereas VL-2 is at a high latitude (~48°N) in the northern plains. And in spite of the fact that the two landers are at nearly identical elevations, they are in very different thermal environments (e.g., MSL is warm when VL-2 is cold), which can have a significant affect on pressures. For these reasons, our confidence in the comparison will increase as more MSL data become available. We will report the results up through sol 360 at the meeting.

  • 61.
    Haberle, R. M.
    et al.
    NASA Ames Research Center.
    Gõmez-Elvira, J.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Juárez, M. De La Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Harri, A. M.
    Finnish Meteorological Institute.
    Hollingsworth, J. L.
    NASA Ames Research Center.
    Kahanpää, H.
    Finnish Meteorological Institute.
    Kahre, M. A.
    NASA Ames Research Center.
    Lemmon, M.
    Department of Atmospheric Sciences, Texas A&M University, College Station, Texas.
    Mischna, M.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Martin-Torres, Javier
    Centro de Astrobiologia, Madrid.
    Moores, J. E.
    Department of Earth and Space Science and Engineering, York University.
    Newman, C.
    Ashima Research, Pasadena.
    Rafkin, S. C R
    Southwest Research Institute, San Antonio, Texas.
    Rennõ, N.
    Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor.
    Richardson, M. I.
    Ashima Research, Pasadena.
    Rodríguez-Manfredi, J. A.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Vasavada, A. R.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Zorzano-Mier, M. P.
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission2014Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 119, nr 3, s. 440-453Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We provide a preliminary interpretation of the Rover Environmental Monitoring Station (REMS) pressure data from the first 100 Martian solar days (sols) of the Mars Science Laboratory mission. The pressure sensor is performing well and has revealed the existence of phenomena undetected by previous missions that include possible gravity waves excited by evening downslope flows, relatively dust-free convective vortices analogous in structure to dust devils, and signatures indicative of the circulation induced by Gale Crater and its central mound. Other more familiar phenomena are also present including the thermal tides, generated by daily insolation variations, and the CO2 cycle, driven by the condensation and sublimation of CO2 in the polar regions. The amplitude of the thermal tides is several times larger than those seen by other landers primarily because Curiosity is located where eastward and westward tidal modes constructively interfere and also because the crater circulation amplifies the tides to some extent. During the first 100 sols tidal amplitudes generally decline, which we attribute to the waning influence of the Kelvin wave. Toward the end of the 100 sol period, tidal amplitudes abruptly increased in response to a nearby regional dust storm that did not expand to global scales. Tidal phases changed abruptly during the onset of this storm suggesting a change in the interaction between eastward and westward modes. When compared to Viking Lander 2 data, the REMS daily average pressures show no evidence yet for the 1-20 Pa increase expected from the possible loss of CO 2 from the south polar residual cap. Key Points REMS pressure sensor is operating nominally New phenomena have been discovered Familiar phenomena have been detected ©2014. American Geophysical Union. All Rights Reserved.

  • 62.
    Hamilton, Victoria E.
    et al.
    Department of Space Studies, Southwest Research Institute.
    Vasavada, Ashwin R.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Sebastián, Eduardo
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Juárez, Manuel De La Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Ramos, Miguel
    Departamento de Física y Matemática, University of Alcalá.
    Armiens, Carlos
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Arvidson, Raymond E.
    Department of Earth and Planetary Sciences, Washington University, St. Louis.
    Carrasco, Isaías
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Christensen, Philip R.
    School of Earth and Space Exploration, Arizona State University.
    Pablo, Miguel A. De
    Departamento de Geología, Geografía y Medio Ambiente, University of Alcalá.
    Goetz, Walter
    Max-Planck-Institut für Solar System Research.
    Gõmez-Elvira, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Lemmon, Mark T.
    Department of Atmospheric Sciences, Texas A&M University, College Station, Texas.
    Madsen, Morten B.
    Niels Bohr Institute, Copenhagen University.
    Martin-Torres, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid , Instituto Andaluz de Cienccias de la Tierra (CSIC-UGR), Grenada.
    Martínez-Frías, Jesús
    Centro de Astrobiologia, INTA-CSIC, Madrid , Instituto de Geociencias (CSIC-UCM), Ciudad Universitaria.
    Molina, Antonio
    Centro de Astrobiologia, INTA-CSIC, Madrid , Departamento de Física y Matemática, University of Alcalá.
    Palucis, Marisa C.
    Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles.
    Rafkin, Scot C R
    Department of Space Studies, Southwest Research Institute.
    Richardson, Mark I.
    Ashima Research, Pasadena.
    Yingst, R. Aileen
    Planetary Science Institute, Tucson.
    Zorzano, María-Paz
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater2014Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 119, nr 4, s. 745-770Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We describe preliminary results from the first 100 sols of ground temperature measurements along the Mars Science Laboratory's traverse from Bradbury Landing to Rocknest in Gale. The ground temperature data show long-term increases in mean temperature that are consistent with seasonal evolution. Deviations from expected temperature trends within the diurnal cycle are observed and may be attributed to rover and environmental effects. Fits to measured diurnal temperature amplitudes using a thermal model suggest that the observed surfaces have thermal inertias in the range of 265-375?J m-2 K-1 s-1/2, which are within the range of values determined from orbital measurements and are consistent with the inertias predicted from the observed particle sizes on the uppermost surface near the rover. Ground temperatures at Gale Crater appear to warm earlier and cool later than predicted by the model, suggesting that there are multiple unaccounted for physical conditions or processes in our models. Where the Mars Science Laboratory (MSL) descent engines removed a mobile layer of dust and fine sediments from over rockier material, the diurnal temperature profile is closer to that expected for a homogeneous surface, suggesting that the mobile materials on the uppermost surface may be partially responsible for the mismatch between observed temperatures and those predicted for materials having a single thermal inertia. Models of local stratigraphy also implicate thermophysical heterogeneity at the uppermost surface as a potential contributor to the observed diurnal temperature cycle. Key Points Diurnal ground temperatures vary with location Diurnal temperature curves are not well matched by a homogeneous thermal model GTS data are consistent with a varied stratigraphy and thermophysical properties.

  • 63.
    Harri, A. M.
    et al.
    Finnish Meteorological Institute, Division of Earth Observation.
    Genzer, M.
    Finnish Meteorological Institute, Division of Earth Observation.
    Kemppinen, O.
    Finnish Meteorological Institute, Division of Earth Observation.
    Kahanpää, H.
    Finnish Meteorological Institute, Division of Earth Observation.
    Gomez-Elvira, J.
    Centro de Astrobiología (CAB).
    Rodriguez-Manfredi, J. A.
    Centro de Astrobiología (CAB).
    Haberle, R.
    NASA Ames Research Center.
    Polkko, J.
    Finnish Meteorological Institute, Division of Earth Observation.
    Schmidt, W.
    Finnish Meteorological Institute, Division of Earth Observation.
    Savijärvi, H.
    Finnish Meteorological Institute, Division of Earth Observation.
    Kauhanen, J.
    Finnish Meteorological Institute, Division of Earth Observation.
    Atlaskin, E.
    Finnish Meteorological Institute, Division of Earth Observation.
    Richardson, M.
    Ashima Research, Pasadena.
    Siili, T.
    Finnish Meteorological Institute, Division of Earth Observation.
    Paton, M.
    Finnish Meteorological Institute, Division of Earth Observation.
    Juarez, M. De La Torre
    NASA Jet Propulsion Laboratory, Pasadena.
    Newman, C.
    Ashima Research, Pasadena.
    Rafkin, S.
    Southwest Research Institute, Boulder.
    Lemmon, M. T.
    Texas A&M University.
    Mischna, M.
    NASA Jet Propulsion Laboratory, Pasadena.
    Merikallio, S.
    Finnish Meteorological Institute, Division of Earth Observation.
    Haukka, H.
    Finnish Meteorological Institute, Division of Earth Observation.
    Martin-Torres, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Zorzano, María-Paz
    Centro de Astrobiología (CAB).
    Peinado, V.
    Centro de Astrobiología (CAB).
    Rennõ, N.
    University of Michigan.
    Pressure observations by the curiosity rover: Initial results2014Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 119, nr 1, s. 82-92Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    REMS-P, the pressure measurement subsystem of the Mars Science Laboratory (MSL) Rover Environmental Measurement Station (REMS), is performing accurate observations of the Martian atmospheric surface pressure. It has demonstrated high data quality and good temporal coverage, carrying out the first in situ pressure observations in the Martian equatorial regions. We describe the REMS-P initial results by MSL mission sol 100 including the instrument performance and data quality and illustrate some initial interpretations of the observed features. The observations show both expected and new phenomena at various spatial and temporal scales, e.g., the gradually increasing pressure due to the advancing Martian season signals from the diurnal tides as well as various local atmospheric phenomena and thermal vortices. Among the unexpected new phenomena discovered in the pressure data are a small regular pressure drop at every sol and pressure oscillations occurring in the early evening. We look forward to continued high-quality observations by REMS-P, extending the data set to reveal characteristics of seasonal variations and improved insights into regional and local phenomena. Key Points The performance and data quality of the REMS / MSL pressure observations. MSL pressure observations exhibit local phenomena of the Gale crater area. Small pressure oscillations possibly linked to gravity waves. ©2013. American Geophysical Union. All Rights Reserved.

  • 64.
    Harri, A.-M.
    et al.
    Finnish Meteorological Institute, Helsinki.
    Genzer, M.
    Finnish Meteorological Institute, Helsinki.
    Kemppinen, O.
    Finnish Meteorological Institute, Helsinki.
    Gomez-Elvira, J.
    Centro de Astrobiologia, Madrid.
    Haberle, R.
    NASA Ames Research Center, Moffett Field.
    Polkko, J.
    Finnish Meteorological Institute, Helsinki.
    Savijärvi, H.
    Finnish Meteorological Institute, Helsinki.
    Rennó, N.
    Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor.
    Rodriguez-Manfredi, J. A.
    Centro de Astrobiología (CAB).
    Schmidt, W.
    Finnish Meteorological Institute, Helsinki.
    Richardson, M.
    Ashima Research, Pasadena.
    Siili, T.
    Finnish Meteorological Institute, Helsinki.
    Paton, M.
    Finnish Meteorological Institute, Helsinki.
    Torre-Juarez, M. De La
    NASA Jet Propulsion Laboratory, Pasadena.
    Mäkinen, T.
    Finnish Meteorological Institute, Helsinki.
    Newman, C.
    Ashima Research, Pasadena.
    Rafkin, S.
    Southwest Research Institute, Boulder.
    Mischna, M.
    NASA Jet Propulsion Laboratory, Pasadena.
    Merikallio, S.
    Finnish Meteorological Institute, Helsinki.
    Haukka, H.
    Finnish Meteorological Institute, Helsinki.
    Martin-Torres, Javier
    Centro de Astrobiologia, Madrid.
    Komu, M.
    Finnish Meteorological Institute, Helsinki.
    Zorzano, María-Paz
    Centro de Astrobiologia, Madrid.
    Peinado, V.
    Centro de Astrobiologia, Madrid.
    Vazquez, L.
    Department of Applied Mathematics, Complutense University of Madrid.
    Urqui, R.
    Centro de Astrobiología (CAB).
    Mars Science Laboratory relative humidity observations: Initial results2014Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 119, nr 9, s. 2132-2147, artikkel-id 16Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers.

  • 65.
    Hassler, Donald M.
    et al.
    Southwest Research Institute, Boulder.
    Zeitlin, Cary
    Southwest Research Institute, Boulder.
    Wimmer-Schweingruber, Robert F.
    Christian Albrechts University, Kiel.
    Ehresmann, Bent
    Southwest Research Institute, Boulder.
    Rafkin, Scot
    Southwest Research Institute, Boulder.
    Eigenbrode, Jennifer L.
    NASA Goddard Space Flight Center.
    Brinza, David E.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Weigle, Gerald
    Southwest Research Institute, San Antonio, Texas.
    Böttcher, Stephan
    Christian Albrechts University, Kiel.
    Böhm, Eckart
    Christian Albrechts University, Kiel.
    Burmeister, Soenke
    Christian Albrechts University, Kiel.
    Guo, Jingnan
    Christian Albrechts University, Kiel.
    Köhler, Jan
    Christian Albrechts University, Kiel.
    Martin, Cesar
    Christian Albrechts University, Kiel.
    Reitz, Guenther
    German Aerospace Center (DLR), Cologne.
    Cucinotta, Francis A.
    University of Nevada Las Vegas.
    Kim, Myung-Hee
    Universities Space Research Association, Houston, Texas.
    Grinspoon, David
    Denver Museum of Nature and Science, Denver, Colorado.
    Bullock, Mark A.
    Southwest Research Institute, Boulder.
    Posner, Arik
    NASA Headquarters, Washington.
    Gõmez-Elvira, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Vasavada, Ashwin
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Grotzinger, John P.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Martin-Torres, Javier
    Centro de Astrobiología (CAB).
    Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover2014Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 343, nr 6169Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  • 66.
    Hassler, Donald M.
    et al.
    Southwest Research Institute, Boulder.
    Zeitlin, Cary
    Southwest Research Institute, Boulder.
    Wimmer-Schweingruber, Robert F.
    Christian Albrechts University, Kiel.
    Ehresmann, Bent
    Southwest Research Institute, Boulder.
    Rafkin, Scot
    Southwest Research Institute, Boulder.
    Martin, Cesar
    Christian Albrechts University, Kiel.
    Boettcher, Stephan
    Christian Albrechts University, Kiel.
    Koehler, Jan
    Christian Albrechts University, Kiel.
    Guo, Jingnan
    Christian Albrechts University, Kiel.
    Brinza, David E.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Reitz, Guenther
    German Aerospace Center (DLR), Cologne.
    Posner, Arik
    NASA Headquarters, Washington.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    The Radiation Environment on the Martian Surface and during MSL’s Cruise to Mars2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 67.
    III, F.J. Calef
    et al.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Clark, B.
    Space Science Institute.
    Goetz, W.
    Max-Planck-Institut für Solar System Research.
    Lasue, J.
    IRAP/CNRS.
    Martin-Torres, Javier
    Instituto Andaluz de Cienccias de la Tierra (CSIC-UGR), Grenada.
    Mier, M. Zorzano
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Assessing Gale Crater as a potential human mission landing site on Mars2015Konferansepaper (Fagfellevurdert)
  • 68.
    Israel Nazarious, Miracle
    et al.
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Vakkada Ramachandran, Abhilash
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano, María-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, Madrid, Spain.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Calibration and preliminary tests of the Brine Observation Transition To Liquid Experiment on HABIT/ExoMars 2020 for demonstration of liquid water stability on Mars2019Inngår i: Acta Astronautica, ISSN 0094-5765, E-ISSN 1879-2030, Vol. 162, s. 497-510Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The search for unequivocal proofs of liquid water on present day Mars is a prominent domain of research with implications on habitability and future Mars exploration. The HABIT (Habitability: Brines, Irradiation, and Temperature) instrument that will be on-board the ExoMars 2020 Surface Platform (ESA-IKI Roscosmos) will investigate the habitability of present day Mars, monitoring temperature, winds, dust conductivity, ultraviolet radiation and liquid water formation. One of the components of HABIT is the experiment BOTTLE (Brine Observation Transition To Liquid Experiment). The purposes of BOTTLE are to: (1) quantify the formation of transient liquid brines; (2) observe their stability over time under non-equilibrium conditions; and (3) serve as an In-Situ Resource Utilization (ISRU) technology demonstrator for water moisture capture. In this manuscript, we describe the calibration procedure of BOTTLE with standard concentrations of brines, the calibration function and the coefficients needed to interpret the observations on Mars.

    BOTTLE consists of six containers: four of them are filled with different deliquescent salts that have been found on Mars (calcium-perchlorate, magnesium-perchlorate, calcium-chloride, and sodium-perchlorate); and two containers that are open to the air, to collect atmospheric dust. The salts are exposed to the Martian environment through a high efficiency particulate air (HEPA) filter (to comply with planetary protection protocols). The deliquescence process will be monitored by observing the changes in electrical conductivity (EC) in each container: dehydrated salts show low EC, hydrated salts show medium EC and, liquid brines show high EC values. We report and interpret the preliminary test results using the BOTTLE engineering model in representative conditions; and we discuss how this concept can be adapted to other exploration missions.

    Our laboratory observations show that 1.2 g of anhydrous calcium-chloride captures about 3.7 g of liquid water as brine passing through various possible hydrate forms. This ISRU technology could potentially be the first attempt to understand the formation of transient liquid water on Mars and to develop self-sustaining in-situ water harvesting on Mars for future human and robotic missions.

  • 69.
    Johnson, Jeffrey R.
    et al.
    Johns Hopkins University Applied Physics Laboratory, Laurel.
    III, J.F. Bell
    Arizona State University.
    Bender, S.
    Planetary Science Institute, Tucson.
    Blaney, D.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Cloutis, E.
    University of Winnipeg, Manitoba.
    DeFlores, L.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Ehlmann, B.
    California Institute of Technology, Pasadena.
    Gasnault, O.
    Université de Toulouse, CNRS, Institut de Recherche en Astrophysique et Planetologie, Toulouse.
    Gondet, B.
    Institut d’Astrophysique Spatiale, Batîment 12, 91405 Orsay Campus.
    Kinch, K.
    Niels Bohr Institute, University of Copenhagen.
    Lemmon, M.
    Texas A&M University, College Station.
    Mouélic, S. Le
    Université de Nantes, Laboratoire de Planétologie et Géodynamique.
    Maurice, S.
    Université de Toulouse, CNRS, Institut de Recherche en Astrophysique et Planetologie, Toulouse.
    Rice, M.
    California Institute of Technology, Pasadena.
    Wiens, R.C.
    Los Alamos National Laboratory.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars2015Inngår i: Icarus (New York, N.Y. 1962), ISSN 0019-1035, E-ISSN 1090-2643, Vol. 249, s. 74-92Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The spectrometers on the Mars Science Laboratory (MSL) ChemCam instrument were used in passive mode to record visible/near-infrared (400–840 nm) radiance from the martian surface. Using the onboard ChemCam calibration targets’ housing as a reflectance standard, we developed methods to collect, calibrate, and reduce radiance observations to relative reflectance. Such measurements accurately reproduce the known reflectance spectra of other calibration targets on the rover, and represent the highest spatial resolution (0.65 mrad) and spectral sampling (

  • 70.
    Kah, Linda C.
    et al.
    University of Tennessee, Knoxville.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Images from Curiosity: A New Look at Mars2015Inngår i: Elements, ISSN 1811-5209, E-ISSN 1811-5217, Vol. 11, nr 1, s. 27-32Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The surface of Mars has been sculpted by flowing water and shaped by wind. During the first two years of its exploration of Gale Crater, the Mars Science Laboratory mission's Curiosity rover has recorded abundant geologic evidence that water once existed on Mars both within the subsurface and, as least episodically, flowed on the land surface. And now, as Curiosity presses onward toward Mount Sharp, the complexity of the Martian surface is becoming increasingly apparent. In this paper, we review the nature of the surface materials and their stories, as seen through the eyes of Curiosity.

  • 71.
    Kahanpää, H.
    et al.
    Finnish Meteorological Institute, Helsinki.
    Juarez, M. de la Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Moores, J.
    York University/Earth and Space Science and Engineering, North York, Ontario.
    Rennó, N.
    University of Michigan, Ann Arbor.
    Navarro, S.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Haberle, R.
    NASA Ames Research Center, Moffett Field.
    Zorzano, M-P.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Verdasca, J.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Lepinette, A.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Rodríguez-Manfredi, J.A.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Gomez-Elvira, J.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Convective Vortices at the MSL Landing Site2014Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 72.
    Kahanpää, Henrik
    et al.
    Finnish Meteorological Institute, Helsinki.
    Juarez, Manuel de la Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Moores, John
    York University, North York, Ontario.
    Rennó, Nilton
    University of Michigan, Ann Arbor.
    Navarro, Sara
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Haberle, Robert
    NASA Ames Research Center, Moffett Field.
    Zorzano, María-Paz
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Verdasca, Jose
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Lepinette, Alain
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Rodriguez-Manfredi, Jose Antonio
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Gomez-Elvira, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Convective vortices in Gale crater2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 73.
    Kahanpää, Henrik
    et al.
    Finnish Meteorological Institute, Helsinki.
    Newman, C.
    Ashima Research Inc.
    Moores, John E.
    Earth and Space Science and Engineering , York University.
    Zorzano Mier, Maria-Paz
    Centro de Astrobiología (CSIC - INTA), Torrejón de Ardoz, Madrid.
    Navarro, Sara
    Centro de Astrobiología (CSIC - INTA), Torrejón de Ardoz, Madrid.
    Lepinette, Alain
    Centro de Astrobiología (CSIC - INTA), Torrejón de Ardoz, Madrid.
    Martin-Torres, Javier
    nstituto Andaluz de Ciencias de la Tierra (CSIC - UGR), Granada.
    Valentin-Serrano, Patricia
    nstituto Andaluz de Ciencias de la Tierra (CSIC - UGR), Granada.
    Cantor, Bruce
    Malin Space Science Systems, San Diego.
    Lemmon, Mark T.
    Department of Atmospheric Sciences , Texas A&M University.
    Ullán, Aurora
    Departamento de Teoría de la Señal y Comunicaciones, Escuela Politécnica Superior , Universidad de Alcalá, Madrid.
    Schmidt, W.
    Finnish Meteorological Institute, Helsinki.
    Dust Devils and Convective Vortices Detected by MSL2017Konferansepaper (Annet vitenskapelig)
  • 74.
    Kahanpää, Henrik
    et al.
    Finnish Meteorological Institute, Helsinki.
    Newman, C.E.
    Ashima Research, Pasadena.
    Moores, John E.
    Center for Research in Earth and Space Science, York University, Toronto, York University, Toronto, York University/Earth and Space Science and Engineering, North York, Ontario, York University, North York, Ontario.
    Zorzano, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Navarro, Sara
    Centro de Astrobiologia, INTA-CSIC, Madrid , Centro de Astrobiología (CSIC-INTA), Madrid, Centro de Astrobiologia, Madrid.
    Lepinette, Alain
    Centro de Astrobiología (CSIC-INTA), Madrid, Centro de Astrobiologia, INTA-CSIC, Madrid , Centro de Astrobiologia, Madrid.
    Cantor, Bruce
    Malin Space Science Systems.
    Lemmon, Mark T.
    Department of Atmospheric Sciences, Texas A&M University, Texas A&M University, College Station.
    Valentin-Serrano, Patricia
    CSIC-UGR - Instituto Andaluz de Ciencias de la Tierra (IACT), Granada, Centro de Astrobiologia, Madrid.
    Ullán, Aurora
    Centro de Astrobiologia, Madrid.
    Schmidt, W.
    Finnish Meteorological Institute, Helsinki.
    Convective vortices and dust devils at the MSL landing site: annual variability2016Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 121, nr 8, s. 1514-1549Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two hundred fifty-two transient drops in atmospheric pressure, likely caused by passing convective vortices, were detected by the Rover Environmental Monitoring Station instrument during the first Martian year of the Mars Science Laboratory (MSL) landed mission. These events resembled the vortex signatures detected by the previous Mars landers Pathfinder and Phoenix; however, the MSL observations contained fewer pressure drops greater than 1.5 Pa and none greater than 3.0 Pa. Apparently, these vortices were generally not lifting dust as only one probable dust devil has been observed visually by MSL. The obvious explanation for this is the smaller number of strong vortices with large central pressure drops since according to Arvidson et al. [2014] ample dust seems to be present on the surface. The annual variation in the number of detected convective vortices followed approximately the variation in Dust Devil Activity (DDA) predicted by the MarsWRF numerical climate model. This result does not prove, however, that the amount of dust lifted by dust devils would depend linearly on DDA, as is assumed in several numerical models of the Martian atmosphere, since dust devils are only the most intense fraction of all convective vortices on Mars, and the amount of dust that can be lifted by a dust devil depends on its central pressure drop. Sol-to-sol variations in the number of vortices were usually small. However, on 1 Martian solar day a sudden increase in vortex activity, related to a dust storm front, was detected. 

  • 75.
    Kaufmann, M.
    et al.
    Department of Physics, University of Wuppertal , Research Center Jülich.
    Gusev, O. A.
    Department of Physics, University of Wuppertal.
    Grossmann, K. U.
    Department of Physics, University of Wuppertal.
    Martin-Torres, Javier
    Analytical Services and Materials Inc., Hampton.
    Marsh, D. R.
    National Center for Atmospheric Research, Boulder, Colorado.
    Kutepov, A. A.
    Max-Planck-Institute for Extraterrestrial Physics-Institute for Astronomy and Astrophysics, University of Munich.
    Satellite observations of daytime and nighttime ozone in the mesosphere and lower thermosphere2003Inngår i: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 108, nr 9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The global distribution of mesospheric and lower thermospheric ozone 9.6 μm infrared emissions was measured by the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) experiment during two Space Shuttle missions in November 1994 and August 1997. The radiances measured by CRISTA have been inverted to O3 number densities in the 50-95 km range by using a nonlocal thermodynamic equilibrium model. A detailed sensitivity study of retrieved O3 number densities has been carried out. The ozone abundance profiles show volume mixing ratios of 1-2 ppmv at the stratopause, 0.5 ppmv or less around 80 km, and typically 1 ppmv during daytime and 10 ppmv during nighttime at the secondary maximum. The agreement with other experiments is typically better than 25%. The global distribution of upper mesospheric ozone shows significant latitudinal gradients and an enhancement in the equatorial upper mesosphere. At the polar night terminator a third ozone maximum is observed. Three-dimensional model results indicate that the latitudinal gradients are significantly influenced by solar tides.

  • 76.
    Kemppinen, Osku
    et al.
    Finnish Meteorological Institute.
    Harri, Ari-Matti
    Finnish Meteorological Institute.
    Kahanpää, Henrik
    Finnish Meteorological Institute, Helsinki.
    Rodriguez-Manfredi, Jose Antonio
    Centro de Astrobiologia, Madrid.
    Gomez-Elvira, Javier
    Centro de Astrobiologia, Madrid.
    Martin-Torres, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    A latitude-based correction for the Martian harmonic pressure model2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 77.
    Kim, Myung-Hee Y.
    et al.
    Wyle Science, Technology and Engineering, Houston, Texas.
    Cucinotta, Francis A.
    NASA Johnson Space Center, Houston.
    Nounu, Hatem N.
    Wyle Science, Technology and Engineering, Houston, Texas.
    Zeitlin, Cary
    Southwest Research Institute, Durham, New Hampshire.
    Hassler, Donald M.
    Southwest Research Institute, Boulder.
    Rafkin, Scot C.R.
    Southwest Research Institute, Boulder.
    Wimmer-Schweingruber, Robert F.
    Christian Albrechts University, Kiel.
    Ehresmann, Bent
    Southwest Research Institute, Boulder.
    Brinza, David E.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Böttcher, Stephan
    Christian Albrechts University, Kiel.
    Böhm, Eckart
    Christian Albrechts University, Kiel.
    Burmeister, Soenke
    Christian Albrechts University, Kiel.
    Guo, Jingnan
    Christian Albrechts University, Kiel.
    Koehler, Jan
    Christian Albrechts University, Kiel.
    Martin, Cesar
    Christian Albrechts University, Kiel.
    Reitz, Guenther
    German Aerospace Center (DLR), Cologne.
    Posner, Arik
    NASA Headquarters, Washington.
    Gómez-Elvira, Javier
    Centro de Astrobiologia, INTA-CSIC, Madrid.
    Harri, Ari-Matti
    Finnish Meteorological Institute, Helsinki.
    Martin-Torres, Javier
    Centro de Astrobiologia, Madrid.
    Comparison of Martian surface ionizing radiation measurements from MSL-RAD with Badhwar-O'Neill 2011/HZETRN model calculations2014Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 119, nr 6, s. 1311-1321Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dose rate measurements from Mars Science Laboratory-radiation assessment detector (MSL-RAD) for 300 sols on Mars are compared to simulation results using the Badhwar-O'Neill 2011 galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation is used. Daily atmospheric pressure is measured at Gale Crater by the MSL Rover Environmental Monitoring Station. Particles impinging on top of the Martian atmosphere reach RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD “E” detector (used for dosimetry) by the rest of the instrument. Simulation of average dose rate is in good agreement with RAD measurements for the first 200 sols and reproduces the observed variation of surface dose rate with changing heliospheric conditions and atmospheric pressure. Model results agree less well between sols 200 and 300 due to subtleties in the changing heliospheric conditions. It also suggests that the average contributions of albedo particles (charge number Z < 3) from Martian regolith comprise about 10% and 42% of the average daily point dose and dose equivalent, respectively. Neutron contributions to tissue-averaged effective doses will be reduced compared to point dose equivalent estimates because a large portion of the neutron point dose is due to low-energy neutrons with energies

  • 78.
    Kloos, Jacob L.
    et al.
    Centre for Research in Earth and Space Sciences, York University, Earth and Space Sciences, Toronto.
    Moores, John E.
    York University, Toronto.
    Lemmon, Mark
    Texas A&M University, College Station.
    Kass, David
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Francis, Raymond
    Jet Propulsion Laboratory/Caltech.
    Juarez, Manuel de la Torre
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Zorzano, María Paz
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    The First Martian Year of Cloud Activity from Mars Science Laboratory (Sol 0 - 800)2016Inngår i: Advances in Space Research, ISSN 0273-1177, E-ISSN 1879-1948, Vol. 57, nr 5, s. 1223-1240Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Using images from the Navigation Cameras onboard the Mars Science Laboratory rover Curiosity, atmospheric movies were created to monitor the cloud activity over Gale Crater. Over the course of the first 800 sols of the mission, 133 Zenith Movies and 152 Supra-Horizon Movies were acquired which use a mean frame subtraction technique to observe tenuous cloud movement. Moores et al. (2015a) reported on the first 360 sols of observations, representing LS = 150° to 5°, and found that movies up to LS = 184° showed visible cloud features with good contrast while subsequent movies were relatively featureless. With the extension of the observations to a full Martian year, more pronounced seasonal changes were observed. Within the Zenith Movie data set, clouds are observed primarily during LS = 3° - 170°, when the solar flux is diminished and the aphelion cloud belt is present at equatorial latitudes. Clouds observed in the Supra-Horizon Movie data set also exhibit seasonality, with clouds predominantly observed during LS = 72° - 108°. The seasonal occurrence of clouds detected in the atmospheric movies is well correlated with orbital observations of water-ice clouds at similar times from the MCS and MARCI instruments on the MRO spacecraft. The observed clouds are tenuous and on average only make up a few-hundredths of an optical depth, although more opaque clouds are observed in some of the movies. Additionally, estimates of the phase function calculated using water-ice opacity retrievals from MCS are provided to show how Martian clouds scatter sunlight, and thus provide insight into the types of ice crystals that comprise the clouds.

  • 79.
    Korablev, O.
    et al.
    Space Research Institute (IKI)MoscowRussia.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR)GranadaSpain.
    Zorzano, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Centro de AstrobiologíaINTA-CSICMadridSpain.
    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter2018Inngår i: Space Science Reviews, ISSN 0038-6308, E-ISSN 1572-9672, Vol. 247, nr 1, artikkel-id 7Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [sv]

    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.

  • 80.
    Korablev, Oleg I.
    et al.
    Space Research Institute IKI, Moscow.
    Dobrolensky, Yurii
    Space Research Institute IKI, Moscow.
    Evdokimova, Nadezhda
    Space Research Institute IKI, Moscow.
    Fedorova, Anna A.
    Space Research Institute IKI, Moscow.
    Kuzmin, Ruslan O.
    Space Research Institute IKI, Moscow.
    Mantsevich, Sergei N.
    Space Research Institute IKI, Moscow.
    Cloutis, Edward A.
    The University of Winnipeg.
    Carter, John
    Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud Orsay.
    Poulet, Francois
    Institut d'Astrophysique Spatiale IAS-CNRS/Université Paris Sud Orsay.
    Flahaut, Jessica
    Université Lyon 1, ENS-Lyon, CNRS.
    Griffiths, Andrew
    Mullard Space Science Laboratory, University College London, Dorking.
    Gunn, Matthew
    Department of Physics, Aberystwyth University.
    Schmitz, Nicole
    German Aerospace Center DLR, Köln.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Rodianov, Daniil S.
    Space Research Institute IKI, Moscow.
    Vago, Jorge L.
    ESA ESTEC, Noordwijk.
    Stepanov, Alexander V.
    Space Research Institute IKI, Moscow.
    Titov, Andrei Yu.
    Space Research Institute IKI, Moscow.
    Vyazovetsky, Nikita A.
    Space Research Institute IKI, Moscow.
    Trokhimovskiy, Alexander Yu.
    Space Research Institute IKI, Moscow.
    Sapgir, Alexander G.
    Space Research Institute IKI, Moscow.
    Kalinnikov, Yurii K.
    Space Research Institute IKI, Moscow.
    Ivanov, Yurii S.
    Main Astronomical Observatory MAO NASU, Kyiv.
    Shapkin, Alexei A.
    Space Research Institute IKI, Moscow.
    Ivanov, Andrei Yu.
    Space Research Institute IKI, Moscow.
    Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover2017Inngår i: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 17, nr 6-7, s. 542-564Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    ISEM (Infrared Spectrometer for ExoMars) is a pencil-beam infrared spectrometer that will measure reflected solar radiation in the near infrared range for context assessment of the surface mineralogy in the vicinity of the ExoMars rover. The instrument will be accommodated on the mast of the rover and will be operated together with the panoramic camera (PanCam), high-resolution camera (HRC). ISEM will study the mineralogical and petrographic composition of the martian surface in the vicinity of the rover, and in combination with the other remote sensing instruments, it will aid in the selection of potential targets for close-up investigations and drilling sites. Of particular scientific interest are water-bearing minerals, such as phyllosilicates, sulfates, carbonates, and minerals indicative of astrobiological potential, such as borates, nitrates, and ammonium-bearing minerals. The instrument has an ∼1° field of view and covers the spectral range between 1.15 and 3.30 μm with a spectral resolution varying from 3.3 nm at 1.15 μm to 28 nm at 3.30 μm. The ISEM optical head is mounted on the mast, and its electronics box is located inside the rover's body. The spectrometer uses an acousto-optic tunable filter and a Peltier-cooled InAs detector. The mass of ISEM is 1.74 kg, including the electronics and harness. The science objectives of the experiment, the instrument design, and operational scenarios are described.

  • 81. Korablev, Oleg
    et al.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, María-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Vago, Jorge L.
    European Space Research and Technology Centre (ESTEC), ESA, Noordwijk, The Netherlands.
    No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations2019Inngår i: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 568, s. 517-520Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today1. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations2,3,4,5. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere6,7, which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane1,6,8. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections2,4. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally.

  • 82.
    Kratz, David P.
    et al.
    Radiation and Aerosols Branch, NASA Langley Research Center, Hampton.
    Mlynczak, Martin G.
    Radiation and Aerosols Branch, NASA Langley Research Center, Hampton.
    Mertens, Christopher J.
    Radiation and Aerosols Branch, NASA Langley Research Center, Hampton.
    Brindley, Helen
    Space and Atmospheric Physics Group, Imperial College of Science, Technology and Medicine, London.
    Gordley, Larry L.
    G & A Technical Software, Inc., Hampton.
    Martin-Torres, Javier
    Analytical Services and Materials Inc., Hampton.
    Miskolczi, Ferenc M.
    Analytical Services and Materials Inc., Hampton.
    Turner, David D.
    Pacific Northwest National Laboratory , Richland, WA.
    An inter-comparison of far-infrared line-by-line radiative transfer models2005Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 90, nr 3-4, s. 323-341Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A considerable fraction (>40%) of the outgoing longwave radiation escapes from the Earth's atmosphere-surface system within a region of the spectrum known as the far-infrared (wave-numbers less than ). Dominated by the line and continuum spectral features of the pure rotation band of water vapor, the far-infrared has a strong influence upon the radiative balance of the troposphere, and hence upon the climate of the Earth. Despite the importance of the far-infrared contribution, however, very few spectrally resolved observations have been made of the atmosphere for wave-numbers less than . The National Aeronautics and Space Administration (NASA), under its Instrument Incubator Program (IIP), is currently developing technology that will enable routine, space-based spectral measurements of the far-infrared. As part of NASA's IIP, the Far-Infrared Spectroscopy of the Troposphere (FIRST) project is developing an instrument that will have the capability of measuring the spectrum over the range from 100 to at a resolution of . To properly analyze the data from the FIRST instrument, accurate radiative transfer models will be required. Unlike the mid-infrared, however, no inter-comparison of codes has been performed for the far-infrared. Thus, in parallel with the development of the FIRST instrument, an investigation has been undertaken to inter-compare radiative transfer models for potential use in the analysis of far-infrared measurements. The initial phase of this investigation has focused upon the inter-comparison of six distinct line-by-line models. The results from this study have demonstrated remarkably good agreement among the models, with differences being of order 0.5%, thereby providing a high measure of confidence in our ability to accurately compute spectral radiances in the far-infrared.

  • 83.
    Lanza, Nina L.
    et al.
    Los Alamos National Laboratory.
    Wiens, Roger C.
    Los Alamos National Laboratory, Space Remote Sensing, Los Alamos National Laboratory, Los Alamos, International Space and Response Division, Los Alamos National Laboratory.
    Arvidson, Ray E.
    Washington University, St. Louis.
    Clark, Benton C.
    Space Science Institute, Boulder, Colorado, Space Science Institute.
    Fischer, W.W.
    California Institute of Technology, Pasadena.
    Gellert, Ralf
    University of Guelph, Ontario, University of Guelph, Department of Physics, University of Guelph, Ontario.
    Grotzinger, John P.
    California Institute of Technology, Pasadena, Division of Geological and Planetary Sciences, California Institute of Technology, Caltech, Pasadena, Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Hurowitz, J.A.
    Department of Geosciences, Stony Brook University, Stony Brook University, NY, Department of Geosciences, State University of New York, Stony Brook.
    McLennan, S.M.
    Department of Geosciences, Stony Brook University, Stony Brook University, NY, Department of Geosciences, State University of New York, Stony Brook, The State University of New York, Stony Brook.
    Morris, R.V.
    NASA Johnson Space Center, NASA Johnson Space Center, Houston, Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston.
    Rice, M.S.
    California Institute of Technology, Pasadena, Division of Geological and Planetary Sciences, California Institute of Technology.
    III, J.F. Bell
    Arizona State University, School of Earth and Space Exploration, Arizona State University, School of Earth and Space Exploration, Arizona State University, Tempe.
    Berger, Jeff A.
    University of Western Ontario, London.
    Blaney, Diana L.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Bridges, Nathan T.
    Johns Hopkins University Applied Physics Laboratory, Laurel, Applied Physics Laboratory, Laurel, Maryland.
    Calef, Fred
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Jet Propulsion Laboratory.
    Campbell, J.L.
    Department of Physics, University of Guelph, Ontario, University of Guelph, Ontario.
    Clegg, S.M.
    Los Alamos National Laboratory, Chemistry Division, Los Alamos National Laboratory.
    Cousin, A.
    Los Alamos National Laboratory, Chemistry Division, Los Alamos National Laboratory.
    Edgett, Kenneth S.
    Malin Space Science Systems, San Diego, Malin Space Science Systems.
    Fabre, Cécile
    Université de Lorraine, Nancy.
    Fisk, M.R.
    Oregon State University, Corvallis.
    Forni, Olivier
    IRAP/CNRS, Institut de Recherche en Astrophysique et Planetologie, Toulouse, Université de Toulouse, UPS-OMP, IRAP, Institut de Recherche en Astophysique et Planetologie (IRAP), Universite' Paul Sabatier, Toulouse, IRAP, CNRS/UPS, Toulouse.
    Frydenvang, J.
    Niels Bohr Institute, University of Copenhagen.
    Hardy, K.R.
    U.S. Naval Academy, Annapolis.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars2016Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, nr 14, s. 7398-7407Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Curiosity rover observed high Mn abundances (>25wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day

  • 84.
    Lanza, N.L.
    et al.
    Los Alamos National Laboratory.
    Wiens, R.C.
    Los Alamos National Laboratory.
    Arvidson, R.E.
    Washington University, St. Louis.
    Clark, B.C.
    Space Science Institute, Boulder, Colorado.
    Fischer, W.W.
    California Institute of Technology, Pasadena.
    Gellert, R.
    University of Guelph, Ontario.
    Grotzinger, J.P.
    California Institute of Technology, Pasadena.
    Hurowitz, J.A.
    Stony Brook University, NY.
    McLennan, S.M.
    Stony Brook University, NY.
    Morris, R.V.
    NASA Johnson Space Center, Houston.
    Rice, M.S.
    Western Washington University, Bellingham.
    III, J.F. Bell
    Arizona State University.
    Berger, J.A.
    University of Western Ontario, London.
    Blaney, D.L.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Blank, J.G.
    NASA Ames, Blue Marble Space Institute of Science, Seattle.
    Bridges, N.T.
    Johns Hopkins University Applied Physics Laboratory, Laurel.
    III, F. Calef
    Jet Propulsion Laboratory.
    Campbell, J.L.
    University of Guelph, Ontario.
    Clegg, S.M.
    Los Alamos National Laboratory.
    Cousin, A.
    Los Alamos National Laboratory.
    Edgett, K.S.
    Malin Space Science Systems.
    Fabre, C.
    Université de Lorraine, Nancy.
    Fisk, M.R.
    Oregon State University, Corvallis.
    Forni, O.
    Institut de Recherche en Astrophysique et Planetologie, Toulouse.
    Frydenvang, J.
    Niels Bohr Institute, University of Copenhagen.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Instituto Andaluz de Cienccias de la Tierra (CSIC-UGR), Grenada.
    Zorzano, M.-P.
    Instituto Nacional de Técnica Aeroespacial, Madrid.
    Oxidation of manganese at Kimberley, Gale Crater: More free oxygen in Mars’ past?2015Konferansepaper (Fagfellevurdert)
  • 85.
    Lasue, J.
    et al.
    Université de Toulouse, Toulouse, France.
    Cousin, A.
    Université de Toulouse, Toulouse, France.
    Meslin, P.Y
    Université de Toulouse,Toulouse, France.
    Mangold, N.
    Université de Nantes, Nantes, France.
    Wiens, R.C
    Los Alamos National Laboratory, Los Alamos, NM, USA.
    Berger, G.
    Université de Toulouse,Toulouse, France.
    Dehouck, E.
    Université de Lyon, Villeurbanne, France.
    Forni, O.
    Université de Toulouse,Toulouse, France.
    Goetz, W.
    Max‐Planck‐Institut für Sonnensystemforschung, Göttingen, Germany.
    Gasnault, O.
    Université de Toulouse,Toulouse, France.
    Rapin, W.
    California Institute of Technology, Pasadena, CA, USA.
    Schroeder, S.
    German Aerospace Center (DLR), Institut für Optische Sensorsysteme, Berlin‐Adlershof, Germany.
    Ollila, A.
    Los Alamos National Laboratory, Los Alamos, NM, USA.
    Johnson, J.
    Johns Hopkins University APL, Laurel, MD, USA.
    Le Mouélic, S.
    Université de Nantes, Nantes, France.
    Maurice, S.
    Université de Toulouse, Toulouse, France.
    Anderson, R.
    USGS, Flagstaff, AZ, USA.
    Blaney, D.
    NASA JPL, Pasadena, CA, USA.
    Clark, B.
    Space Science Institute, Boulder, CO, USA.
    Clegg, S.M
    Los Alamos National Laboratory, Los Alamos, NM, USA.
    D'Uston, C.
    Université de Toulouse,Toulouse, France.
    Fabre, C.
    Lorraine University, Vandoeuvre, France.
    Lanza, N.
    Los Alamos National Laboratory, Los Alamos, NM, USA.
    Madsen, M.B
    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Melikechi, N.
    University of Massachusetts Lowell, Lowell, MA, USA.
    Newsom, H.
    University of New Mexico, Albuquerque, NM, USA.
    Sautter, V.
    Muséum d'Histoire Naturelle, Paris, France.
    Zorzano Mier, María-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik. Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz, Spain.
    Martian Eolian Dust Probed by ChemCam2018Inngår i: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 45, nr 20, s. 10968-10977Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The ubiquitous eolian dust on Mars plays important roles in the current sedimentary and atmospheric processes of the planet. The ChemCam instrument retrieves a consistent eolian dust composition at the submillimeter scale from every first laser shot on Mars targets. Its composition presents significant differences with the Aeolis Palus soils and the Bagnold dunes as it contains lower CaO and higher SiO2. The dust FeO and TiO2contents are also higher, probably associated with nanophase oxide components. The dust spectra show the presence of volatile elements (S and Cl), and the hydrogen content is similar to Bagnold sands but lower than Aeolis Palus soils. Consequently, the dust may be a contributor to the amorphous component of soils, but differences in composition indicate that the two materials are not equivalent.

  • 86.
    Lasue, J.
    et al.
    IRAP-OMP, CNRS-UPS, Toulouse.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Zorzano Mier, Maria-Paz
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    What ChemCam’s first shots tell us about martian dust?2017Konferansepaper (Annet vitenskapelig)
  • 87.
    Lemmon, Mark
    et al.
    Texas A&M University, College Station.
    Bell, James
    Arizona State University, Phoenix.
    Malin, Michael
    Malin Space Science Systems, San Diego.
    Bean, Keri
    Texas A&M University.
    Wolff, Michael
    Space Science Institute, Boulder, Colorado.
    Vasavada, Ashwin
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Martin-Torres, Javier
    Centro de Astrobiologia, Madrid.
    Zorzano-Mier, Maria Paz
    Centro de Astrobiologia, Madrid.
    Astrometric observations of Phobos and Deimos during solar transits imaged by the Curiosity Mastcam2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 88.
    Leshin, L.A.
    et al.
    Department of Earth and Environmental Science and School of Science, Rensselaer Polytechnic Institute, Troy, New York.
    Mahaffy, P.R.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Webster, C.R.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Cabane, M.
    LATMOS, UPMC Université Paris 06, Université Versailles St-Quentin, UMR CNRS 8970.
    Coll, P.
    Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris-Est Créteil, Univ. Paris Diderot and CNRS.
    Conrad, P.G.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Jr., P.D. Archer
    Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston.
    Atreya, S.K.
    Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor.
    Brunner, A.E.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Buch, A.
    Laboratoire de Génie des Procédés et les Matériaux, Ecole Centrale Paris.
    Eigenbrode, J.L.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Flesch, G.J.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Franz, H.B.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Freissinet, C.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Glavin, D.P.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    McAdam, A.C.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Miller, K.E.
    Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge.
    Ming, D.W.
    Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston.
    Morris, R.V.
    Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston.
    Navarro-González, R.
    Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria.
    Niles, P.B.
    Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston.
    Owen, T.
    Institute for Astronomy, University of Hawaii, Honolulu.
    Pepin, R.O.
    School of Physics and Astronomy, University of Minnesota, Minneapolis.
    Squyres, S.
    Department of Astronomy, Cornell University, Ithaca, New York.
    Steele, A.
    Carnegie Institution, Geophysical Laboratory, Washington.
    Grotzinger, J.P.
    Division of Geological and Planetary Sciences, California Institute of Technology.
    Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover2013Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 341, nr 6153, artikkel-id 1238937Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

  • 89.
    Litvak, M.L.
    et al.
    Space Research Institute, RAS, Moscow.
    Mitrofanov, I.G.
    Space Research Institute, RAS, Moscow.
    Sanin, A.B.
    Space Research Institute, RAS, Moscow.
    Lisov, D.
    Space Research Institute, RAS, Moscow.
    Behar, A.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Boynton, W.V.
    University of Arizona.
    DeFlores, L.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Fedosov, F.
    Space Research Institute, RAS, Moscow.
    Golovin, D.
    Space Research Institute, RAS, Moscow.
    Hardgrove, C.
    University of Tennessee, Knoxville.
    Harshman, K.
    University of Arizona.
    Jun, I.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Kozyrev, A.S.
    Space Research Institute, RAS, Moscow.
    Kuzmin, R.O.
    Space Research Institute, RAS, Moscow.
    Malakhov, A.
    Space Research Institute, RAS, Moscow.
    Milliken, R.
    Brown University, Providence, Rhode Island.
    Mischna, M.
    Jet Propulsion Laboratory, Pasadena, Kalifornien.
    Moersch, J.
    University of Tennessee, Knoxville.
    Mokrousov, M.
    Space Research Institute, RAS, Moscow.
    Nikiforov, S.
    Space Research Institute, RAS, Moscow.
    Shvetsov, V.N.
    Joint Institute for Nuclear Research, Dubna.
    Stack, K.
    California Institute of Technology, Pasadena.
    Starr, R.
    Catholic University of America, Washington D. C..
    Tate, C.
    University of Tennessee, Knoxville.
    Tret'yakov, V.I.
    Space Research Institute, RAS, Moscow.
    Martin-Torres, Javier
    Centro de Astrobiologia, Madrid.
    Local variations of bulk hydrogen and chlorine-equivalent neutron absorption content measured at the contact between the Sheepbed and Gillespie Lake units in Yellowknife Bay, Gale Crater, using the DAN instrument onboard Curiosity2014Inngår i: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 119, nr 6, s. 1259-1275Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity were analyzed for variations in subsurface neutron flux and tested for possible correlation with local geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active measurements were acquired every 0.75–1.0 m to search for the variations of subsurface hydrogen content along a 15 m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be characterized with different depth distributions of water-equivalent hydrogen (WEH) and different chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The variations of the average WEH at the top 60 cm of the subsurface are estimated at up to 2–3%. Chlorine-equivalent neutron absorption abundances ranged within 0.8–1.5%. The largest difference in WEH and chlorine-equivalent neutron absorption distribution is found between Sheepbed and Gillespie Lake.

  • 90.
    López-Puertas, M.
    et al.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Funke, B.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    López-Valverde, M. Á
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Martin-Torres, Javier
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Clarmann, T. Von
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Stiller, G.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Oelhaf, H.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Fischer, H.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Flaud, J. M.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Non-LTE studies for the analysis of MIPAS/ENVISAT data2002Inngår i: Proceedings of SPIE, the International Society for Optical Engineering, ISSN 0277-786X, E-ISSN 1996-756X, Vol. 4539, s. 381-395Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is a high-resolution limb sounder on board the European polar platform ENVISAT, scheduled for launch late in 2001. Three main characteristics converge in MIPAS which make it a very useful instrument for non-LTE studies: its wide spectral coverage (4.15-14.6 μm or 680-2275 cm-1); high spectral resolution (0.03 cm-1), and high sensitivity; all of this in addition to its global spatial coverage. In this paper we present an overview of the non-LTE studies that have been carried out in preparation for the analysis of MIPAS data, including the evaluation of non-LTE effects in the operational processing, focussed in the stratosphere, and the retrieval of species that normally emit under non-LTE conditions. The current mission plan for measuring the non-LTE upper atmosphere is described, as well as the general purpose non-LTE retrieval scheme developed for analyzing those measurements.

  • 91.
    López-Puertas, M.
    et al.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Zaragoza, G.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    López-Valverde, M.Á.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Martin-Torres, Javier
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Shved, G.M.
    Institute of Physics, University of St. Petersburg.
    Manuilova, R.O.
    Institute of Physics, University of St. Petersburg.
    Kutepov, A.A.
    Institut für Astronomie und Astrophysik der Universität München.
    Gusev, O.A.
    Institut für Astronomie und Astrophysik der Universität München.
    Clarmann, T. Von
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Linden, A.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Stiller, G.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Wegner, A.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Oelhaf, H.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Edwards, D.P.
    National Center for Atmospheric Research, Boulder, Colorado.
    Flaud, J.-M.
    Université Pierre et Marie Curie (UPMC), Paris.
    Non-local thermodynamic equilibrium limb radiances for the mipas instrument on Envisat-11998Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 59, nr 3-5, s. 377-403Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An evaluation of the effects that the assumption of local thermodynamic equilibrium (LTE) has on the retrieval of pressure, temperature and the five primary target gases (O3, H2O, CH4, N2O, and HNO3) from spectra to be taken by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on the Envisat-1 platform has been conducted. For doing so, non-LTE and LTE limb radiances in the spectral range of 680–2275 cm−1 (4.15–14.6 μm) with a resolution of 0.05 cm−1 at tangent heights from 10 to 70 km have been computed. These calculations included the most updated non-LTE populations of a large number of vibrational levels of the CO2, O3, H2O, CH4, N2O and HNO3 molecules which cause the most prominent atmospheric infrared emissions. A discussion of the most important non-LTE effects on the limb radiances as well as on the retrievals of pressure-temperature and volume mixing ratios of O3, H2O, CH4, N2O, and HNO3 is presented, together with the most important non-LTE issues that could be studied with the future coming of MIPAS data.

  • 92.
    Mahaffy, P.R.
    et al.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Conrad, Pamela G.
    NASA Goddard Space Flight Center.
    Martin-Torres, Javier
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Volatile and Isotopic Imprints of Ancient Mars2015Inngår i: Elements, ISSN 1811-5209, E-ISSN 1811-5217, Vol. 11, nr 1, s. 51-56Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  • 93.
    Mahaffy, P.R.
    et al.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Webster, C.R.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Stern, J.C.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Brunner, A.E.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Atreya, S.K.
    Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor.
    Conrad, P.G.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Domagal-Goldman, S.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Eigenbrode, J.L.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Flesch, Gregory J.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Christensen, Lance E.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Franz, H.B.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Freissinet, C.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Glavin, D.P.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Grotzinger, John P.
    Jet Propulsion Laboratory, California Institute of Technology, Pasadena.
    Jones, J.H.
    NASA Johnson Space Flight Center, Houston.
    Leshin, L.A.
    Department of Earth and Environmental Science and School of Science, Rensselaer Polytechnic Institute, Troy, New York, School of Science, Rensselaer Polytechnic Institute, Troy.
    Malespin, Charles A.
    NASA Goddard Space Flight Center.
    McAdam, A.C.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    Ming, D.W.
    NASA Johnson Space Center, Houston, Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston.
    Navarro-Gonzalez, Rafael
    Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Mexico, Ciudad Universitaria, Centro de Astrobiologia, INTA-CSIC, Madrid , Universidad Nacional Autónoma de México.
    Niles, P.B.
    Astromaterials Research and Exploration Science, NASA Johnson Space Center, Houston, NASA Johnson Space Center, Houston.
    Owen, Tobias
    University of Hawaii, Honolulu.
    Pavlov, A.A.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, NASA Goddard Space Flight Center.
    Steele, Andrew
    Carnegie Institution of Washington, Washington, DC..
    Trainer, M.G.
    Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.
    The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars2015Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 347, nr 6220, s. 412-414Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity’s Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  • 94.
    Manuilova, R.O.
    et al.
    Department of Atmospheric Physics, University of St. Petersburg.
    Gusev, O.A.
    Institut für Astronomie und Astrophysik der Universität München.
    Kutepov, A.A.
    Institut für Astronomie und Astrophysik der Universität München.
    Clarmann, T. Von
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Oelhaf, H.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Stiller, G.P.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    Wegner, A.
    Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung Karlsruhe.
    López-Puertas, M.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Martin-Torres, Javier
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Zaragoza, G.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Flaud, J.-M.
    Laboratoire de Photophysique Moléculaire, CNRS, Université Paris-Sud, Orsay.
    Modelling of non-LTE limb spectra of i.r. ozone bands for the MIPAS space experiment1998Inngår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 59, nr 3-5, s. 405-422Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A new model for calculating the populations of the ozone vibrational states under non-LTE (Local Thermodynamic Equilibrium) conditions is presented. In the model, 23 vibrational levels of the O3 molecule, as well as three vibrational levels of the O2 molecule and two vibrational levels of the N2 molecule, are considered. The radiative transfer at the break-down of LTE was treated explicitly for 150 000 ro-vibrational transitions. The populations obtained were used to calculate limb radiances in various spectral regions of the 4.8 and 9.6 μm bands. Test retrievals of O3 vertical volume mixing ratio (VMR) profiles with a radiance model disregarding non-LTE were performed in order to assess the potential impact of non-LTE effects on the retrieval of the O3 abundances from MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) measurements.

  • 95.
    Martin-Torres, Javier
    et al.
    Centro de Astrobiología (CAB).
    Castro, Juan Francisco Buenestado
    Centro de Astrobiología (CAB).
    La vida en el universo: ¿Qué sabemos de?2013Bok (Fagfellevurdert)
  • 96.
    Martin-Torres, Javier
    et al.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    López-Valverde, Miguel A.
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    López-Puertas, Manuel
    Instituto de Astrofísica de Andalucía CSIC, Granada.
    Modelling of the non-LTE populations of the nitric acid and methane vibrational states in the middle atmosphere1998Inngår i: Journal of Atmospheric and Solar-Terrestrial Physics, ISSN 1364-6826, E-ISSN 1879-1824, Vol. 60, nr 17, s. 1631-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A modelling of the non-LTE populations of the HNO3 and CH4 vibrational levels in the middle atmosphere has been carried out and the results are presented. The work is oriented to assess the potential impact of non-LTE effects on the remote sensing of these gases. The models developed for this purpose include a complete set of radiative and collisional processes. In order to cover typical and extreme remote sensing scenarios, the models have been applied to different atmospheric and solar illumination conditions. The vibrational levels responsible for the major emissions of HNO3 are found to be in LTE up to the lower mesosphere, driven by the dominant V-T processes with the air molecules. In the non-LTE region, the absorption from the warmer tropospheric layers and solar direct excitation produce small enhancements over the equilibrium populations. The mesospheric CH4 vibrational temperatures are mainly determined by two mechanisms: the radiative absorption of the upcoming radiation emitted by the lower layers of the atmosphere, and the near-resonant vibrational coupling between the CH4 levels and the first vibrationally excited level of O2. By day, non-LTE is significantly enhanced as a consequence of the collisional relaxation of overtone and combinational states excited by the solar radiation at 3.3 μm. The effects derived from the uncertainties in the parameters of the models have been studied.

  • 97.
    Martin-Torres, Javier
    et al.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Martínez-Frías, Jesús
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Zorzano, María-Paz
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Serrano, María
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Mendaza, Teresa
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Hamilton, Vicky
    Southwest Research Institute, Boulder.
    Sebastián, Eduardo
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Armiens, Carlos
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Gómez-Elvira, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 98.
    Martin-Torres, Javier
    et al.
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Mier, Maria-Paz Zorzano
    Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
    Vida Extraterrestre: Implicaciones2015Inngår i: Burgense, ISSN 0521-8195, Vol. 55, nr 1, s. 197-206Artikkel i tidsskrift (Fagfellevurdert)
  • 99.
    Martin-Torres, Javier
    et al.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Zorzano, Maria Paz
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Lepinette, Alain
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Navarro, Sara
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Sebastian, Eduardo
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Torres, Josefina
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Hari, Ari-Matti
    Finnish Meteorological Institute, Helsinki.
    Genzer, Maria
    Finnish Meteorological Institute, Helsinki.
    Gomez-Elvira, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Rodriguez-Manfredi, Jose Antonio
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Review of the First 100 sols of Measurements of the Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
  • 100.
    Martin-Torres, Javier
    et al.
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Zorzano, María Paz
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Pla-García, Jorge
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Rafkin, Scot
    Southwest Research Institute, Boulder.
    Lepinette, Alain
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Sebastián, Eduardo
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Gómez-Elvira, Javier
    Centro de Astrobiología (CSIC-INTA), Madrid.
    Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements2013Konferansepaper (Fagfellevurdert)
    Fulltekst (pdf)
    FULLTEXT01
1234 51 - 100 of 197
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf