Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 96) Visa alla publikationer
Johansson, Ö. (2025). Vinterdäcksinducerad kavitation - ett fenomen som bidrar till nedbrytning av våt vägbana. Luleå: Luleå tekniska universitet
Öppna denna publikation i ny flik eller fönster >>Vinterdäcksinducerad kavitation - ett fenomen som bidrar till nedbrytning av våt vägbana
2025 (Svenska)Rapport (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Luleå: Luleå tekniska universitet, 2025. s. 20
Serie
Forskningsrapport / Luleå tekniska universitet, ISSN 1402-1528
Nationell ämneskategori
Yt- och korrosionsteknik Solid- och strukturmekanik
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-115404 (URN)978-91-8048-848-8 (ISBN)
Tillgänglig från: 2025-11-14 Skapad: 2025-11-14 Senast uppdaterad: 2025-11-14Bibliografiskt granskad
Pamidi, T., Johansson, Ö., Shankar, V. & Löfqvist, T. (2024). Hydrodynamic and acoustic cavitation effects on properties of cellulose fibers. Chemical Engineering and Processing, 203, Article ID 109894.
Öppna denna publikation i ny flik eller fönster >>Hydrodynamic and acoustic cavitation effects on properties of cellulose fibers
2024 (Engelska)Ingår i: Chemical Engineering and Processing, ISSN 0255-2701, E-ISSN 1873-3204, Vol. 203, artikel-id 109894Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The cellulose pulp refining process is crucial for achieving high-quality paper characteristics. This research aims to enhance energy efficiency while maintaining good fiber quality using hydrodynamic and acoustic cavitation (HAC). Experiments were conducted with an in-house developed flow-through sonicator combined with a novel Venturi nozzle for hydrodynamic cavitation. The Venturi design was determined by analytical modeling and verified by CFD simulation with multi-phase turbulence models to balance cavitation intensity and turbulence against the acoustic cavitation effect. Experimental evaluation of two batches of CTMP fibers, pre-processed in different ways, showed significant improvements in paper strength and fiber properties. The best results for Batch 1 (HC and LC) were obtained with 386 kWh/bdt for AC and 350 kWh/bdt for HC (60 °C, 2 % concentration). The tensile strength index increased by 26 %, and the TEA-index, related to freeness, increased by 55 %. HAC treatment (750 kWh/bdt, 70 °C, 1.5 % concentration) of the less refined Batch2 (HC) yielded results better than the Batch 1 reference. These findings confirm the energy-efficient potential of the sonicator concept compared to traditional industrial processes. The conclusion is that HAC-refining of softwood pulp requires a proper balance between hydrodynamic and acoustic cavitation intensities. Both fiber concentration by weight and temperature are critical for an energy-efficient process.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Ultrasonics, Cavitation, Acoustic, Hydrodynamic, Cellulose fibers, Energy efficiency
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk akustik; Elektroniksystem
Identifikatorer
urn:nbn:se:ltu:diva-82011 (URN)10.1016/j.cep.2024.109894 (DOI)001270975200001 ()2-s2.0-85198262597 (Scopus ID)
Anmärkning

Validerad;2024;Nivå 2;2024-08-06 (hanlid);

Full text license: CC BY;

This article has previously appeared as a manuscript in a thesis.

Tillgänglig från: 2020-12-16 Skapad: 2020-12-16 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Grindborg, K. & Johansson, Ö. (2024). Promoting health and social interaction for school children with hyperacusis. In: : . Paper presented at Nordic Audiological Society Conference, NAS 2024, Örebro, Sweden, May 26-29, 2024 (pp. 5-5).
Öppna denna publikation i ny flik eller fönster >>Promoting health and social interaction for school children with hyperacusis
2024 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Övrigt vetenskapligt)
Nyckelord
hyperacusis, school, children, sound environment
Nationell ämneskategori
Pediatrik Oto-rino-laryngologi
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-110389 (URN)
Konferens
Nordic Audiological Society Conference, NAS 2024, Örebro, Sweden, May 26-29, 2024
Tillgänglig från: 2024-10-16 Skapad: 2024-10-16 Senast uppdaterad: 2025-10-21Bibliografiskt granskad
Toratti, L., Asplund, M., Thiery, F., Chandran, P., Johansson, Ö. & Rantatalo, M. (2024). Railway curve squeal detection and tonal analysis. In: Proceedings of INTER-NOISE 2024: . Paper presented at INTER-NOISE24, Nantes, France, August 25-29, 2024 (pp. 5492-5502). Institute of Noise Control Engineering
Öppna denna publikation i ny flik eller fönster >>Railway curve squeal detection and tonal analysis
Visa övriga...
2024 (Engelska)Ingår i: Proceedings of INTER-NOISE 2024, Institute of Noise Control Engineering , 2024, s. 5492-5502Konferensbidrag, Publicerat paper (Övrigt vetenskapligt)
Ort, förlag, år, upplaga, sidor
Institute of Noise Control Engineering, 2024
Serie
NOISE-CON proceedings, ISSN 0736-2935
Nationell ämneskategori
Strömningsmekanik Annan samhällsbyggnadsteknik
Forskningsämne
Drift och underhållsteknik; Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-110380 (URN)10.3397/IN_2024_3604 (DOI)
Konferens
INTER-NOISE24, Nantes, France, August 25-29, 2024
Anmärkning

Funder: European Union, (No 101101917);

Tillgänglig från: 2024-10-15 Skapad: 2024-10-15 Senast uppdaterad: 2025-10-21Bibliografiskt granskad
Maghami, S. & Johansson, Ö. (2024). Structural acoustic design of a sonicator to enhance energy transfer efficiency. Ultrasonics sonochemistry, 103, Article ID 106804.
Öppna denna publikation i ny flik eller fönster >>Structural acoustic design of a sonicator to enhance energy transfer efficiency
2024 (Engelska)Ingår i: Ultrasonics sonochemistry, ISSN 1350-4177, E-ISSN 1873-2828, Vol. 103, artikel-id 106804Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The study focuses on developing a comprehensive design approach for a flow-through ultrasonic reactor (sonicator) to tackle challenges like low energy transfer efficiency and unstable system performance. The simulation accounts for structural vibrations, structural-fluid interactions, and pressure distributions within the cavitation zone under single-frequency excitation. Different geometrical designs of cylindrical sonicators are analyzed, with input parameters tailored to acquire higher acoustic cavitation intensity. The findings reveal a novel hexagonal ring-shaped excitation structure that reduces coupling losses, ensures uniform acoustic pressure distribution, and generates symmetric vibration mode shapes. The study emphasizes the separation of parasitic modes from the desired resonance frequency response and simulates the influence of bubbly liquid properties through complex wave numbers and harmonic responses. Experimental validation on a manufactured prototype, including mechanical and electrical impedance, sound pressure spectrum, and cavitation intensity, supports the simulated results. Ultimately, the sonicator exhibits three feasible resonance frequencies to be used pairwise at the certain temperature and input power interval for different applications.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Sonicator design, Energy transfer efficiency, Impedance matching, Parasitic modes, Bubbly liquid
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-104266 (URN)10.1016/j.ultsonch.2024.106804 (DOI)001188839600001 ()38364486 (PubMedID)2-s2.0-85185337862 (Scopus ID)
Forskningsfinansiär
JordbruksverketLuleå tekniska universitet
Anmärkning

Validerad;2024;Nivå 2;2024-04-09 (sofila);

Full text license: CC BY 4.0;

Funder: European Union through the European Agricultural Fund for Rural Development (2016-5274); Innovativa Drycker Balsgård AB

Tillgänglig från: 2024-02-13 Skapad: 2024-02-13 Senast uppdaterad: 2025-10-21Bibliografiskt granskad
Pamidi, T. R., Johansson, Ö. & Löfqvist, T. (2022). Acoustic optimization of a flow through sonicator for fibrillation of cellulose fibers. Chemical Engineering and Processing, 181, Article ID 109154.
Öppna denna publikation i ny flik eller fönster >>Acoustic optimization of a flow through sonicator for fibrillation of cellulose fibers
2022 (Engelska)Ingår i: Chemical Engineering and Processing, ISSN 0255-2701, E-ISSN 1873-3204, Vol. 181, artikel-id 109154Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fibrillation is identified as the most energy intensive process step in pulp and paper manufacturing and improved energy efficiency is the motivation for development of alternative technologies. The aim of this study is to explore the potential of a new refining concept based on cavitation, focusing on the optimization of acoustic cavitation efficiency of the proposed flow-through sonicator concept. The simulations utilize the linearized wave equation in the frequency domain with an addition of nonlinear attenuation introduced by cavitation bubbles. Verification is made by pressure measurements, calorimetry, and foil tests. The fibrillation capability was validated on chemi-thermo mechanical pulp fibers at low consistencies. Fiber properties was characterized by ultrasonic spectroscopy, fiber analysis and SEM. The objective is to optimize the energy transfer efficiency from electrical input power to acoustic cavitation intensity for efficient fibrillation of cellulose fibers. Results showed changes in fiber dimensions and fiber morphology, however, improvements in tensile strength index, measured and predicted by ultrasonic spectroscopy, was limited to 20 % at an energy level of 804 kWh/bdt. To enhance energy efficiency and paper strength properties, it is suggested to add a hydrodynamic cavitation device prior to the sonicator to initiate cavitation bubbles and to increase turbulence intensity.

Ort, förlag, år, upplaga, sidor
Elsevier, 2022
Nyckelord
Ultrasound, Cavitation, Sonochemistry, Coupled resonances, Multiphysics, Acoustic optimization
Nationell ämneskategori
Pappers-, massa- och fiberteknik Strömningsmekanik
Forskningsämne
Elektroniksystem; Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-93455 (URN)10.1016/j.cep.2022.109154 (DOI)000867627100004 ()2-s2.0-85140759268 (Scopus ID)
Forskningsfinansiär
EnergimyndighetenStora Enso
Anmärkning

Validerad;2023;Nivå 2;2023-04-13 (sofila);

Funder: SCA; Holmen AB

Tillgänglig från: 2022-10-05 Skapad: 2022-10-05 Senast uppdaterad: 2025-10-21Bibliografiskt granskad
Maghami, S. & Johansson, Ö. (2021). Analysis of excitation signal characteristics associated with energy-efficient acoustic cavitation. In: Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS): . Paper presented at 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, China, September 11-16, 2021. IEEE, Article ID 5157.
Öppna denna publikation i ny flik eller fönster >>Analysis of excitation signal characteristics associated with energy-efficient acoustic cavitation
2021 (Engelska)Ingår i: Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), IEEE, 2021, artikel-id 5157Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Acoustic cavitation has been utilized in many industrial applications to enhance the process intensity. To obtain the most energy-efficient sonochemical activity, the excitation signal specifications are of great importance. This investigation focuses on the effect of different wave characteristics on sonochemical activity including erosion rate and measured sound pressure levels below the surface and beside the high power sonotrode. Signal characteristics as frequency bandwidth, sweep rate, and direction are considered aspects of time signal shape transformation. Altogether eight groups of factors were evaluated in a two-level and replicated design. Numerical simulation has been conducted to achieve the optimized geometrical design and to prevent parasitic modes in sonotrode’s configuration. Results show that negative direction with 100 ms sweep rate and 800 Hz frequency bandwidth generates both the highest sound pressure level and erosion rate. The findings from this study are aimed to be implemented in an energy-efficient flow through sonochemical reactor design.

Ort, förlag, år, upplaga, sidor
IEEE, 2021
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-87587 (URN)10.1109/IUS52206.2021.9593497 (DOI)000832095000176 ()2-s2.0-85122852386 (Scopus ID)
Konferens
2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, China, September 11-16, 2021
Anmärkning

ISBN för värdpublikation: 978-1-6654-0355-9; 978-1-6654-4777-5;

Funders: European innovative part-nership (EIP); IDB Innovative Drinks Balsgård AB

Tillgänglig från: 2021-10-21 Skapad: 2021-10-21 Senast uppdaterad: 2025-10-21Bibliografiskt granskad
Johansson, Ö., Pamidi, T. & Shankar, V. (2021). Extraction of tungsten from scheelite using hydrodynamic and acoustic cavitation. Ultrasonics sonochemistry, 71, Article ID 105408.
Öppna denna publikation i ny flik eller fönster >>Extraction of tungsten from scheelite using hydrodynamic and acoustic cavitation
2021 (Engelska)Ingår i: Ultrasonics sonochemistry, ISSN 1350-4177, E-ISSN 1873-2828, Vol. 71, artikel-id 105408Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The primary purpose of this study is to investigate the effects of hydrodynamic and acoustic cavitation (HAC) on the leaching efficiency of tungsten. The aim is to reduce energy use and to improve the recovery rate. The goal is also to carry out a leaching process at a much lower temperature than in an autoclave process that is currently used in the industry. Energy-efficient initiation and collapse of cavitation bubbles require optimization of (i) vibro-acoustic response of the reactor structure, (ii) multiple excitation frequencies adapted to the optimized reactor geometry, and (iii) hydrodynamic cavitation with respect to orifice geometry and flow conditions. The objective is to modify and apply a previously in house developed high power cavitation reactor in order to recover tungsten by leaching of the dissolution of scheelite in sodium hydroxide. In this process, various experimental conditions like dual-frequency excitation, different orifice geometry have been investigated. The numerically optimized reactor concept was excited by two frequencies 23 kHz and 39–43 kHz in various flow conditions. The effects of leaching time, leaching temperature, ultrasonic power and geometry of orifice plates have been studied. The leaching temperature was varied from 40 °C to 80 °C. The concentration of leaching reagent sodium hydroxide (NaOH) was 10 mol/L.The results were compared to conventional chemical leaching. Energy supplement with acoustic cavitation of 130 kWh/kg concentrate resulted in a leaching recovery of tungsten (WO3) of 71.5%, compared to 36.7% obtained in absence of ultrasound. The results confirm that the method developed is energy efficient and gives a recovery rate potentially better than current autoclave technology.

Ort, förlag, år, upplaga, sidor
Elsevier, 2021
Nyckelord
Ultrasonic reactor, Acoustic and hydrodynamic cavitation, Tungsten, Scheelite
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-81929 (URN)10.1016/j.ultsonch.2020.105408 (DOI)000605590700003 ()33310454 (PubMedID)2-s2.0-85098464814 (Scopus ID)
Forskningsfinansiär
VinnovaEnergimyndigheten
Anmärkning

Validerad;2021;Nivå 2;2021-01-05 (alebob)

Tillgänglig från: 2020-12-10 Skapad: 2020-12-10 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Shankar, V., Lundberg, A., Pamidi, T., Landström, L.-O. & Johansson, Ö. (2020). CFD Analysis of Turbulent Fibre Suspension Flow. Fluids, 5(4), Article ID 175.
Öppna denna publikation i ny flik eller fönster >>CFD Analysis of Turbulent Fibre Suspension Flow
Visa övriga...
2020 (Engelska)Ingår i: Fluids, E-ISSN 2311-5521, Vol. 5, nr 4, artikel-id 175Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A new model for turbulent fibre suspension flow is proposed by introducing a model for the fibre orientation distribution function (ODF). The coupling between suspended fibres and the fluid momentum is then introduced through the second and fourth order fibre orientation tensors, respectively. From the modelled ODF, a method to construct explicit expressions for the components of the orientation tensors as functions of the flow field is derived. The implementation of the method provides a fibre model that includes the anisotropic detail of the stresses introduced due to presence of the fibres, while being significantly cheaper than solving the transport of the ODF and computing the orientation tensors from numerical integration in each iteration. The model was validated and trimmed using experimental data from flow over a backwards facing step. The model was then further validated with experimental data from a turbulent fibre suspension channel flow. Simulations were also carried out using a Bingham viscoplastic fluid model for comparison. The ODF model and the Bingham model performed reasonably well for the turbulent flow areas, and the latter model showed to be slightly better given the parameter settings tested in the present study. The ODF model may have good potential, but more rigorous study is needed to fully evaluate the model.

Ort, förlag, år, upplaga, sidor
Basel, Switzerland: MDPI, 2020
Nyckelord
cellulose fibre, CFD, non-Newtonian fluids, Bingham model, orientation distribution function (ODF)
Nationell ämneskategori
Strömningsmekanik
Forskningsämne
Teknisk akustik
Identifikatorer
urn:nbn:se:ltu:diva-81079 (URN)10.3390/fluids5040175 (DOI)000601555400001 ()2-s2.0-85092649276 (Scopus ID)
Anmärkning

Validerad;2020;Nivå 2;2020-11-10 (alebob)

Tillgänglig från: 2020-10-09 Skapad: 2020-10-09 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Pamidi, T. R., Johansson, Ö., Löfqvist, T. & Shankar, V. (2020). Comparison of two different ultrasound reactors for the treatment of cellulose fibers. Ultrasonics sonochemistry, 62, Article ID 104841.
Öppna denna publikation i ny flik eller fönster >>Comparison of two different ultrasound reactors for the treatment of cellulose fibers
2020 (Engelska)Ingår i: Ultrasonics sonochemistry, ISSN 1350-4177, E-ISSN 1873-2828, Vol. 62, artikel-id 104841Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The pulp and paper industry is in continuous need for energy-efficient production processes. In the refining process of mechanical pulp, fibrillation is one of the essential unit operations that count for up to 80% of the total energy use. This initial study explores the potential and development of new type of scalable ultrasound reactor for energy efficient mechanical pulping. The developed reactor is of continuous flow type and based on both hydrodynamic and acoustic cavitation in order to modify the mechanical properties of cellulose fibers. A comparison of the prototype tube reactor is made with a batch reactor type where the ultrasonic horn is inserted in the fluid. The pulp samples were sonicated by high-intensity ultrasound, using tuned sonotrodes enhancing the sound pressure and cavitation intensity by a controlled resonance in the contained fluid. The resonant frequency of the batch reactor is 20.8 kHz and for the tube reactor it is 22.8 kHz. The power conversion efficiency for the beaker setup is 25% and 36% in case of the tube reactor in stationary mode. The objective is to verify the benefit of resonance enhanced cavitation intensity when avoiding the effect of Bjerkenes forces. The setup used enables to keep the fibers in the pressure antinodes of the contained fluid. In case of the continuous flow reactor the effect of hydrodynamic cavitation is also induced. The intensity of the ultrasound in both reactors was found to be high enough to produce cavitation in the fluid suspension to enhance the fiber wall treatment. Results show that the mechanical properties of the fibers were changed by the sonification in all tests. The continuous flow type was approximately 50% more efficient than the beaker. The effect of keeping fibers in the antinode of the resonant mode shape of the irradiation frequency was also significant. The effect on fiber properties for the tested mass fraction was determined by a low-intensity ultrasound pulse-echo based measurement method, and by a standard pulp analyzer.

Ort, förlag, år, upplaga, sidor
Elsevier, 2020
Nyckelord
Ultrasound reactor, Hydrodynamic and acoustic cavitation, Cellulose fiber properties, Cavitation, Birch fibers
Nationell ämneskategori
Strömningsmekanik Annan elektroteknik och elektronik
Forskningsämne
Teknisk akustik; Elektroniksystem
Identifikatorer
urn:nbn:se:ltu:diva-76606 (URN)10.1016/j.ultsonch.2019.104841 (DOI)000513988100003 ()31806547 (PubMedID)2-s2.0-85076529593 (Scopus ID)
Forskningsfinansiär
Energimyndigheten, 166518
Anmärkning

Validerad;2020;Nivå 2;2020-02-26 (alebob)

Tillgänglig från: 2019-11-04 Skapad: 2019-11-04 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-2955-2776

Sök vidare i DiVA

Visa alla publikationer