RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Influence of Shear-Induced Damage on the Formability of High-Strength Steel Sheet: A Particle-based Numerical Study
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Hållfasthetslära.ORCID-id: 0000-0002-0764-5667
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [sv]

Shear cutting is the primary method for preparing blanks in sheet metal forming, widely used across various sheet materials. However, when applied to advanced high-strength steels (AHSS), the process introduces additional challenges. While AHSS offer superior strength-to-weight performance, their limited ductility makes them highly sensitive to shear-induced edge damage, which can lead to premature edge cracking and reduced formability. Accurate numerical modelling of shear cutting and its effects is therefore essential for optimising manufacturing processes and improving formability predictions.

In this thesis, the Particle Finite Element Method (PFEM) was employed to develop a numerical framework for modelling of the shear cutting process, addressing challenges associated with extreme deformations and localised strain effects. PFEM provided a robust approach for modelling large localised deformations and material separation while preserving detailed information in critical regions along the cut edge. The method was validated against experimental sheet punching tests, demonstrating its ability to accurately capture key aspects of the shear cutting process. The developed PFEM model was further extended to examine the influence of cutting conditions on sheared edge formability, providing insights into how variations in cutting parameters affect edge cracking. A hybrid modelling approach was introduced, combining numerical shear cutting results with experimental observations to assess circumferential variations in cut edge morphology. This approach enabled a more detailed analysis of local heterogeneities in sheared edges, which are often overlooked in conventional numerical assessments. Additionally, a critical investigation of continuum-based ductile damage modelling for pre-cracked AHSS sheets highlighted the limitations of strain-driven failure models in capturing crack evolution. This study suggested that fracture mechanics approaches could provide a more reliable alternative for predicting crack propagation in edge cracking scenarios.

The findings of this thesis enhance the understanding of shear-induced damage mechanisms and their role in subsequent forming defects, providing valuable insights for minimising edge cracking in AHSS. The successful application of PFEM, combined with ductile damage and failure modelling, demonstrates its effectiveness as a robust and computationally efficient method for capturing extreme deformations and fracture evolution in shear cutting, contributing to the advancement of state-of-the-art shear cutting simulations. Moreover, the results highlights the significance of circumferential variations in sheared edge morphology, emphasising the need for precise cutting conditions and tool maintenance. These advancements contribute to the optimisation of shear cutting processes and broader applications of PFEM in large deformation solid mechanics, supporting the development of lightweight, high-performance AHSS structures.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå tekniska universitet, 2025.
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord [en]
Shear cutting, AHSS, Shear affected zone, Sheared edge damage, Edge cracking, PFEM
Nationell ämneskategori
Solid- och strukturmekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
URN: urn:nbn:se:ltu:diva-111944ISBN: 978-91-8048-783-2 (tryckt)ISBN: 978-91-8048-784-9 (digital)OAI: oai:DiVA.org:ltu-111944DiVA, id: diva2:1943467
Disputation
2025-05-06, E231, Luleå University of Technology, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-03-11 Skapad: 2025-03-10 Senast uppdaterad: 2025-04-11Bibliografiskt granskad
Delarbeten
1. Stating failure modelling limitations of high strength sheets: Implications to sheet metal forming
Öppna denna publikation i ny flik eller fönster >>Stating failure modelling limitations of high strength sheets: Implications to sheet metal forming
2021 (Engelska)Ingår i: Materials, E-ISSN 1996-1944, Vol. 14, nr 24, artikel-id 7821Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This article discusses the fracture modelling accuracy of strain-driven ductile fracture models when introducing damage of high strength sheet steel. Numerical modelling of well-known fracture mechanical tests was conducted using a failure and damage model to control damage and fracture evolution. A thorough validation of the simulation results was conducted against results from laboratory testing. Such validations show that the damage and failure model is suited for modelling of material failure and fracture evolution of specimens without damage. However, pre-damaged specimens show less correlation as the damage and failure model over-predicts the displacement at crack initiation with an average of 28%. Consequently, the results in this article show the need for an extension of the damage and failure model that accounts for the fracture mechanisms at the crack tip. Such extension would aid in the improvement of fracture mechanical testing procedures and the modelling of high strength sheet metal manufacturing, as several sheet manufacturing processes are defined by material fracture.

Ort, förlag, år, upplaga, sidor
MDPI, 2021
Nyckelord
Advanced high strength Steel, Crack tips, Fracture testing, High strength steel, Metal forming, Sheet metal, Advanced high strength steel, Complex-phase steels, Damage and failure, Damage modelling, Failure modelling, Fracture model, GISSMO, High strength sheets, Material fracture, Sheet metal forming, Ductile fracture
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-88595 (URN)10.3390/ma14247821 (DOI)000738368600001 ()34947415 (PubMedID)2-s2.0-85121359847 (Scopus ID)
Anmärkning

Validerad;2022;Nivå 2;2022-01-01 (johcin)

Tillgänglig från: 2021-12-30 Skapad: 2021-12-30 Senast uppdaterad: 2025-03-10Bibliografiskt granskad
2. A particle finite element method approach to model shear cutting of high-strength steel sheets
Öppna denna publikation i ny flik eller fönster >>A particle finite element method approach to model shear cutting of high-strength steel sheets
Visa övriga...
2024 (Engelska)Ingår i: Computational Particle Mechanics, ISSN 2196-4378, Vol. 11, s. 1863-1886Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Shear cutting introduces residual strains, notches and cracks, which negatively affects edge-formability. This is especially relevant for forming of high-strength sheets, where edge-cracking is a serious industrial problem. Numerical modelling of the shear cutting process can aid the understanding of the sheared edge damage and help preventing edge-cracking. However, modelling of the shear cutting process requires robust and accurate numerical tools that handle plasticity, large deformation and ductile failure. The use of conventional finite element methods (FEM) may give rise to distorted elements or loss of accuracy during re-meshing schemes, while mesh-free methods have tendencies of tensile instability or excessive computational cost. In this article, the authors propose the particle finite element method (PFEM) for modelling the shear cutting process of high-strength steel sheets, acquiring high accuracy results and overcoming the stated challenges associated with FEM. The article describe the implementation of a mixed axisymmetric formulation, with the novelty of adding a ductile damage- and failure model to account for material fracture in the shear-cutting process. The PFEM shear-cutting model was validated against experiments using varying process parameters to ensure the predictive capacity of the model. Likewise, a thorough sensitivity analysis of the numerical implementation was conducted. The results show that the PFEM model is able to predict the process forces and cut edge shapes over a wide range of cutting clearances, while efficiently handling the numerical challenges involved with large material deformation. It is thus concluded that the PFEM implementation is an accurate predictive tool for sheared edge damage assessment.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nyckelord
PFEM, Shear cutting, AHSS, Ductile damage
Nationell ämneskategori
Teknisk mekanik Annan materialteknik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-104322 (URN)10.1007/s40571-023-00708-5 (DOI)001156076500001 ()2-s2.0-85184256463 (Scopus ID)
Anmärkning

Validerad;2024;Nivå 2;2024-10-15 (joosat);

Funder: Horizon 2020 (101006844); RFCS (847213);

Full text: CC BY license

Tillgänglig från: 2024-02-21 Skapad: 2024-02-21 Senast uppdaterad: 2025-03-10Bibliografiskt granskad
3. Numerical modelling of shear cutting in complex phase high strength steel sheets: A comprehensive study using the Particle Finite Element Method
Öppna denna publikation i ny flik eller fönster >>Numerical modelling of shear cutting in complex phase high strength steel sheets: A comprehensive study using the Particle Finite Element Method
Visa övriga...
2025 (Engelska)Ingår i: Finite elements in analysis and design (Print), ISSN 0168-874X, E-ISSN 1872-6925, Vol. 246, artikel-id 104331Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The study examines the shear cutting process of Advanced High Strength Steel using the Particle Finite Element Method. Shear cutting, a crucial process in sheet metal forming, often leads to microcracks and plastic deformation that degrades the material performance in subsequent applications, such as cold forming, crashworthiness, and fatigue resistance. This work utilises the Particle Finite Element Method as an alternative to conventional Finite Element Methods to address the challenges of large deformation solid mechanics, offering high predictive accuracy in localised shearing deformation and fracture. The model was validated against experimental data from sheet punching tests, with evaluations at both macroscopic and mesoscopic levels, including cut edge profiles and microstructural deformation within the shear-affected zone. The Particle Finite Element Method approach demonstrated a high level of accuracy in predicting cut edge shape and shear-induced damage across various cutting conditions. As an unconventional numerical technique, usage of the Particle Finite Element Method advances modelling of large deformations solid mechanics and providing a robust tool for optimising manufacturing processes of materials sensitive to sheared edge damage.

Ort, förlag, år, upplaga, sidor
Elsevier B.V., 2025
Nyckelord
Shear cutting, Advanced high strength steel, Particle Finite Element Method, Sheared edge damage, Shear-affected zone
Nationell ämneskategori
Teknisk mekanik Bearbetnings-, yt- och fogningsteknik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-111911 (URN)10.1016/j.finel.2025.104331 (DOI)2-s2.0-85218467918 (Scopus ID)
Projekt
CuttingEdge4.0Steel4FatigueFatigue4Light
Forskningsfinansiär
EU, Horisont 2020, 101006844
Anmärkning

Validerad;2025;Nivå 2;2025-03-10 (u8);

Funder: EU Research Fund for Coal and Steel (RFCS) (847213);

Full text license: CC BY

Tillgänglig från: 2025-03-10 Skapad: 2025-03-10 Senast uppdaterad: 2025-03-10Bibliografiskt granskad
4. The influence of cut edge heterogeneity in complex phase steel sheet edge cracking: An experimental and numerical investigation
Öppna denna publikation i ny flik eller fönster >>The influence of cut edge heterogeneity in complex phase steel sheet edge cracking: An experimental and numerical investigation
Visa övriga...
2025 (Engelska)Ingår i: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 322, artikel-id 111176Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This study investigated how geometrical variations along the perimeter of sheared edges influenced the formability of advanced high-strength steel sheets during hole expansion. A combined numerical and experimental approach was employed, based on the standardised ISO 16630 Hole Expansion Test. The shear cutting process prior to cut edge forming was modelled using the Particle Finite Element Method, which enabled accurate prediction of edge morphology and deformation within the shear affected zone. The resulting geometries and residual fields were transferred to three-dimensional blank meshes for hole expansion simulations. A cold-rolled complex-phase steel was used, processed with varying cutting clearances to produce distinct edge conditions. Circumferential heterogeneities, including burr-to-no-burr transitions and irregular burnish patterns, were shown to significantly reduce edge formability and promote early crack initiation. These effects were found to be more detrimental than damage distributed through the thickness of the sheared edge. To represent such irregularities in numerical modelling, a hybrid meshing strategy was introduced, incorporating three-dimensional microscopy data into the simulation workflow. This approach improved the accuracy of predicted hole expansion ratios and allowed reproduction of experimentally observed fracture patterns. Stress analysis showed that geometric imperfections around the hole perimeter elevated local stress triaxiality and accelerated damage development. The findings emphasised the importance of achieving uniform cut edge quality to ensure reliable forming performance and reduce the risk of edge cracking during manufacturing.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
AHSS, Shear cutting, Sheared edge damage, Edge cracking, ISO 16630 HET
Nationell ämneskategori
Solid- och strukturmekanik
Forskningsämne
Hållfasthetslära
Identifikatorer
urn:nbn:se:ltu:diva-111943 (URN)10.1016/j.engfracmech.2025.111176 (DOI)
Anmärkning

Validerad;2025;Nivå 2;2025-05-14 (u2);

Full text: CC BY license;

Funder: European Union (RFCS No. 847213, No. 101157245 and Horizon 2020 No. 101006844);

This article has previously appeared as a manuscript in a thesis.

Tillgänglig från: 2025-03-10 Skapad: 2025-03-10 Senast uppdaterad: 2025-05-14Bibliografiskt granskad

Open Access i DiVA

fulltext(6622 kB)53 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6622 kBChecksumma SHA-512
862070dc6d49743edd7cd9f41495dba6cc9631662471b38d9ec6ddc0d15258826457ac4b1442c6a07018af9391d1c7e10bf95afcddf5d99933bd0484f55fb9d1
Typ fulltextMimetyp application/pdf

Person

Sandin, Olle

Sök vidare i DiVA

Av författaren/redaktören
Sandin, Olle
Av organisationen
Hållfasthetslära
Solid- och strukturmekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 54 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 557 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf