Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Rotor-stator contact in a hydropower machine with squeeze-film damper
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0009-0000-8078-5036
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Produkt- och produktionsutveckling.ORCID-id: 0000-0001-6016-6342
Vattenfall AB Research and Development, SE 814 26 Älvkarleby, Sweden.
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Maskinkonstruktion
Identifikatorer
URN: urn:nbn:se:ltu:diva-105026OAI: oai:DiVA.org:ltu-105026DiVA, id: diva2:1849802
Tillgänglig från: 2024-04-09 Skapad: 2024-04-09 Senast uppdaterad: 2024-04-22Bibliografiskt granskad
Ingår i avhandling
1. Rotordynamic Modeling and Characterization of Support Elements in Vertical Machines
Öppna denna publikation i ny flik eller fönster >>Rotordynamic Modeling and Characterization of Support Elements in Vertical Machines
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Rotordynamiska Modellering och Karakterisering av Stödelement i Vertikala Maskiner
Abstract [en]

The dynamic properties of rotating machines are highly influenced by supporting elements, such as bearings, seals, damping elements or housings. They play a significant role in regulating the characteristics of the interaction between the rotating and stationary parts of machines. Over the past few years, numerous research studies have been published focusing on the dynamics of such devices across a wide range of applications. The advancement of the research has significantly contributed to enhancing their performance and ensuring the smooth operation of rotating machinery by minimizing excessive vibrations that can lead to catastrophic failure. The research work in this thesis explores the dynamics of supporting elements in vertical rotating machinery, with a particular focus on hydropower applications. In fact, some of the concepts are generic and can be applied to horizontal rotors or any other types of rotating machines. Using numerical simulation and actual measurements, their contribution to the system’s overall performance was investigated. These include the self-induced vibration in vertical application tilting pad journal bearings, and vibration issues observed on a hydropower unit attributed to large bearing clearance. Also, particular attention was given to the influence of the squeeze film damper on the rotor-stator contact dynamics of hydropower units, using tools such as Poincaré maps and bifurcation diagrams.

Moreover, achieving optimal design of such devices requires, among other key aspects, accurate and reliable simulation models to facilitate the prediction and evaluation of their characteristics at any stage in the product development process. In rotordynamic simulations, a common approach for incorporating bearing forces in the system equation is by representing them with stiffness and damping coefficients. For a small vibrational amplitude about a static position, linearized bearing coefficient assumptions can be valid. This is especially applicable for operation under a large radial static load, such as in horizontal rotors, due to the dead weight of the rotor. For vertical rotors, however, the weight of the rotor acts axially, and the radial bearing load is usually low. The bearing coefficients show nonlinearity, making them dependent on the trajectory of the rotor. Therefore, the linear bearing assumption, which is valid for horizontal rotors, does not hold true for vertical rotors. This makes the simulation of a vertical machine more complicated as it typically involves solving the fluid film lubrication model. The classical numerical models can sometimes be computationally demanding and require impractically long computational time. An efficient and fast numerical simulation method which does not significantly affect the accuracy of the result is critical to facilitating the simulation processes effectively. This thesis details the suggested simplifications employed on the bearing models and transformation matrices in the numerical integration procedure. The results from these models were validated using experiments to ensure their reliability.

Ort, förlag, år, upplaga, sidor
Luleå: Luleå University of Technology, 2024
Serie
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Nyckelord
Rotordynamic, Support Element, Bearing, Squeeze Film Damper, Hydropower, Vertical Machine
Nationell ämneskategori
Teknisk mekanik
Forskningsämne
Maskinkonstruktion
Identifikatorer
urn:nbn:se:ltu:diva-105194 (URN)978-91-8048-552-4 (ISBN)978-91-8048-553-1 (ISBN)
Disputation
2024-06-18, B192, Luleå tekniska universitet, Luleå, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-04-22 Skapad: 2024-04-22 Senast uppdaterad: 2024-05-17Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Benti, Gudeta BerhanuAidanpää, Jan-Olov

Sök vidare i DiVA

Av författaren/redaktören
Benti, Gudeta BerhanuAidanpää, Jan-Olov
Av organisationen
Produkt- och produktionsutveckling
Teknisk mekanik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 44 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf