System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advancing Continuous Surface Densification of Wood: Process Development, Material Characterisation, and Digital Integration
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Wood Science and Engineering.ORCID iD: 0000-0003-0869-5858
2025 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Framsteg inom Kontinuerlig Ytkomprimering av Trä : Processutveckling, Materialkarakterisering och Digital Integrering (Swedish)
Abstract [en]

Transverse compression of wood can result in only the surface(s) of the wood material achieving a higher density, a process referred to as surface densification. Increased density generally leads to improved mechanical properties. For low-density wood species, this can increase value and open up new areas of use. By enhancing strength and hardness, surface-densified wood is positioned as a sustainable alternative to conventional materials such as plastic, metal, and tropical hardwoods, which are often selected for their high density. Despite decades of research and industrial development, the commercial spread of densified wood remains limited, which is considered to be due to high production costs, significant variations in product properties, and the complexity of scaling up the process for industrial use.

This doctoral thesis addresses several key technical barriers to the industrial production of surface-densified wood, primarily intended for flooring, focusing on a continuous process and the optimisation of material properties. The aims have been to (1) evaluate the feasibility of continuous densification, (2) investigate how knots and the orientation of growth rings in the wood's cross-section affect the process and the resulting product properties, and (3) attempt to establish methods for characterising and optimising the density profile of the compressed wood with regard to the desired mechanical properties of the compressed surface. Achieving repeatability in the process has also been a key focus.

Experimental studies have been conducted in a full-scale belt press specially developed for this project, which is also suitable for industrial use. The results from the studies conducted in this project demonstrate the potential of continuous densification, where desired density profiles can be achieved while avoiding non-value-adding production steps. The heat transfer to the wood material before and during compression was identified as crucial for compressing the wood’s cell structure in areas that result in the desired surface properties being obtained. The orientation of the growth rings in the wood’s cross-section was found to significantly impact how deformations vary within the wood during compression and how the wood surface springs back after compression. The results highlight the importance of adjusting material selection and process parameters to achieve the desired final product result. This is particularly relevant when fast-growing wood and so-called "low-quality" wood are used for densification, as such wood often exhibits strong variations in growth ring orientation and knot size.

Characterisation of the mechanical properties of densified wood showed a strong correlation between the density profile and the surface hardness of the wood. The indentation depth in traditional mechanical hardness tests is significantly affected by the density profile. This results in limitations of traditional hardness testing methods, such as the Brinell test, which can lead to misleading hardness values for a wood surface depending on the density profile. To avoid misjudging the hardness of a wood surface for surface-densified wood, the proposed approach involves continuously adjusting process parameters and the density profile to meet specific end requirements. The density profile of, for example, conventional wood-based panel materials is usually determined using X-ray densitometry. However, this method can be challenging to implement in a continuous industrial densification process. A practically applicable method for process control and design is proposed, where machine learning models are used to predict density profiles from photographic images of the cross-section of the densified wood. The method is considered applicable for industrial use and can be used in real-time for quality control and process management. This integration of digital tools supports data-driven manufacturing of densified wood.

This doctoral work bridges scientific principles and industrial practice, contributing to the potential commercialisation of surface-densified solid wood products. By addressing critical challenges in process efficiency and material characterisation, this work lays some of the foundational stones needed for large-scale industrial production of densified wood, such as for use in flooring.

Abstract [sv]

Komprimering av trä kan resultera i att enbart trämaterialets yta(or) får en förhöjd densitet, en process som benämns ytdensifiering. Förhöjd densitet innebär i det allmänna fallet också förbättrade mekaniska egenskaper. För träslag med låg densitet kan detta resultera i ett ökat värde och öppna upp för nya användningsområden. Genom att förbättra egenskaper som styrka och hårdhet positioneras ytdensifierat trä som ett hållbart alternativ till konventionella material som plast, metall och tropiska träslag som idag väljs på grund av deras höga densitet. Trots decennier av forskning och industriell utveckling är den kommersiella spridningen av densifierat trä begränsad vilket bedöms vara en följd av höga produktionskostnader, stora variationer i produktegenskaper och komplexiteten i att skala upp processen för industriellt bruk.

Denna doktorsavhandling behandlar några viktiga tekniska hinder för industriell tillverkning av ytdensifierat trä avsett för i första hand golv, med fokus på en kontinuerlig process och optimering av materialegenskaper. Syftet har varit att: (1) utvärdera genomförbarheten av kontinuerlig densifiering, (2) undersöka hur kvistar och årsringarnas orientering i virkets tvärsnitt påverkar processen och de resulterande produktegenskaperna, samt (3) att försöka etablera metoder för karakterisering och optimering av det komprimerade virkets densitetsprofil med avseende på den komprimerade ytans mekaniska egenskaperna. Att uppnå repeterbarhet i processen har också varit i fokus.

Experimentella studier har bland annat genomförts i en fullskalig bandpress speciellt framtagen för detta projekt, men där det också är möjligt att använda den industriellt. Resultaten av i projektet genomförda studier visar på möjligheter med kontinuerlig densifiering, där eftersträvade densitetsprofiler kan uppnås samtidigt som icke värdeskapande aktiviteter kan undvikas. Värmeöverföringen till trämaterialet innan och under komprimeringen identifierades som avgörande för att komprimera träets cellstruktur i de områden som medför att eftersträvade ytegenskaper erhålls. Årsringarnas orientering i virkets tvärsnitt visade sig ha en stor inverkan på hur deformationer varierar inom virket under komprimeringen och hur träytan återfjädrar efter komprimeringen (spring-back). Resultaten visar på vikten av att anpassa materialval och processparametrar för att uppnå önskat slutresultat för produkten. Detta är särskilt relevant när snabbvuxet virke och virke av så kallad ”låg kvalitet” används för densifiering, eftersom sådant virke ofta uppvisar stora variationer i årsringsorientering och kviststorlek.

Karakterisering av mekaniska egenskaper för densifierat trä visade på ett starkt samband mellan den densitetsprofilens form och träytans hårdhet. Intrycksdjupet vid traditionella mekaniska hårdhetstest påverkas betydligt av densitetsprofilen. Detta visar på begränsningar i traditionella testmetoder för hårdhet, till exempel Brinell test, vilket kan resultera i missvisande hårdhetsvärden för en träyta beroende på densitetsprofilen. För att undvika missbedömning av en träytas hårdhet för ytdensifierat trä föreslås i stället för traditionella hårdhetstest, ett tillvägagångssätt där processparametrar och densitetsprofil kontinuerligt anpassas i processen för att uppfylla specifika slutkrav. Densitetsprofilen för till exempel konventionella träbaserade skivmaterial kan bestämmas med röntgendensitometri, men metoden kan vara svår att implementera i en kontinuerlig industriell process för densifiering. En praktiskt tillämpbar metod för processkontroll och design föreslås där modeller för maskininlärning används för att förutsäga densitetsprofiler från fotografiska bilder av det densifierade träets tvärsnitt. Metoden bedöms kunna tillämpas industriellt och kunna användas i realtid för kvalitetskontroll och processtyrning. Denna integration av digitala verktyg främjar datadriven tillverkning densifierat trä.

Detta doktorandarbete bygger en bro mellan vetenskapliga principer och industriell praktik, och bidrar till möjlig kommersialisering av ytdensifierade produkter av massivt trä. Genom att ta sig an kritiska utmaningar inom processeffektivitet och materialkarakterisering, har detta arbete med några grundstenar som behövs för en storskalig industriell produktion av densifierat trä för användning som till exempel golv.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2025.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
Keywords [en]
densification, density profile, continuous process, hardness
Keywords [sv]
komprimering, densitetsprofil, kontinuerlig process, hårdhet
National Category
Wood Science
Research subject
Wood Science and Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-111448ISBN: 978-91-8048-744-3 (print)ISBN: 978-91-8048-745-0 (electronic)OAI: oai:DiVA.org:ltu-111448DiVA, id: diva2:1932165
Public defence
2025-03-27, A193, Luleå University of Technology, Skellefteå, 09:00 (English)
Opponent
Supervisors
Available from: 2025-01-29 Created: 2025-01-28 Last updated: 2025-03-12Bibliographically approved
List of papers
1. Continuous densification of wood with a belt press: the process and properties of the surface-densified wood
Open this publication in new window or tab >>Continuous densification of wood with a belt press: the process and properties of the surface-densified wood
2023 (English)In: Wood Material Science & Engineering, ISSN 1748-0272, E-ISSN 1748-0280, Vol. 18, no 4, p. 1573-1586Article in journal (Refereed) Published
Abstract [en]

Thermo-mechanical densification of sawn timber results in improved mechanical properties, but densified wood remains a fairly expensive niche product, partially because of high-cost batch processing. Densification in a continuous process could address this problem and was shown to be possible in previous research. The outcomes were limited to proofs-of-concept, partially due to insufficient cooling capabilities of the used densification equipment, resulting in high spring-back. Therefore, a novel continuous process using a belt press to densify full-sized sawn timber has been conceived. The press ensures almost constant contact between the wood and the heating and cooling elements. The study aimed to analyse how the processing temperature, speed and compression ratio affected the density profile, spring-back, set-recovery, Brinell hardness, and bending properties. Results showed a density increase concentrated close beneath the surface in contact with the heating element and approx. 20% spring-back. Belt speeds above 2 m min−1 caused higher spring-back due to the reduced contact time between the wood and the heating element. Brinell hardness increased by up to 250% at a compression ratio of 27% while bending properties were unaffected. Belt temperature and speed were shown to be critical factors to consider for the future optimisation of the belt-press process.

Place, publisher, year, edition, pages
Taylor & Francis, 2023
Keywords
Compression of wood, set-recovery, mechanical properties, density profile
National Category
Wood Science
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-97745 (URN)10.1080/17480272.2023.2216660 (DOI)000997882700001 ()2-s2.0-85161407224 (Scopus ID)
Funder
Luleå University of Technology, CT WOOD Centre of ExcellenceThe Kempe Foundations
Note

Validerad;2023;Nivå 2;2023-11-08 (joosat);

Full text license: CC BY-NC-ND 4.0

Available from: 2023-05-31 Created: 2023-05-31 Last updated: 2025-01-28Bibliographically approved
2. Continuous densification of wood with a belt press: how knot features impact the densification outcome
Open this publication in new window or tab >>Continuous densification of wood with a belt press: how knot features impact the densification outcome
2023 (English)In: Wood Material Science & Engineering, ISSN 1748-0272, E-ISSN 1748-0280, Vol. 18, no 4, p. 1587-1596Article in journal (Refereed) Published
Abstract [en]

Densification, i.e. the transverse compression of sawn timber has been studied and commercialised for well over 100 years but remains an expensive niche product with low annual production volumes. One reason for this is the reliance on time-consuming batch processes in a hot press. To solve this, a continuous densification process using a belt press, capable of densifying full-sized sideboards was developed. However, there is insufficient knowledge about the effect of knots on the densification outcome. The objective of this study was to assess how different knot parameters affect the densified wood in terms of damage and deformation to the knot itself and the surrounding wood material. Multivariate data analysis methods were applied to a dataset of 171 knots, described by 23 variables. The data showed that it is possible to densify knots in a continuous process without causing damage. Especially sound knots are often unproblematic, even at relatively large sizes, while densifying dead knots often resulted in unacceptable damage to the knot or the surrounding wood. From a material selection standpoint, any knots bleeding into the board edge and dead knots greater than 20 mm in diameter should be avoided altogether.

Place, publisher, year, edition, pages
Taylor and Francis Ltd., 2023
Keywords
Compression of wood, full-size samples, surface densification, wood defects, wood industry
National Category
Wood Science Other Mechanical Engineering
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-99295 (URN)10.1080/17480272.2023.2228278 (DOI)001012945900001 ()2-s2.0-85163005843 (Scopus ID)
Funder
The Kempe FoundationsLuleå University of Technology
Note

Validerad;2023;Nivå 2;2023-11-08 (joosat);

Full text license: CC BY-NC-ND

Available from: 2023-08-08 Created: 2023-08-08 Last updated: 2025-01-28Bibliographically approved
3. The effect of the growth ring orientation on spring-back and set-recovery in surface-densified wood
Open this publication in new window or tab >>The effect of the growth ring orientation on spring-back and set-recovery in surface-densified wood
2023 (English)In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 77, no 6, p. 394-406Article in journal (Refereed) Published
Abstract [en]

Wood under thermo-mechanical densification behaves differently depending on the cross-sectional growth ring orientation (GRO) relative to the direction of compression. This influences the degree of cell damage, but also the shape-memory effects occurring when the compression load is released (spring-back) and when the timber is re-moistened (set-recovery). To study how the GRO influences the shape-memory effects, Scots pine specimens were separated into three distinct groups of GRO (Flat, Inclined, Hybrid) and then thermo-mechanically surface-densified. Spring-back and set-recovery were determined by thickness measurements and by digital image correlation. A GRO parallel to the densified surface, resulted in a low spring-back and a high set-recovery which were uniform over the width of the specimen. Specimens with a GRO between 15 and 45° to the densified surface showed high spring-back and low set-recovery, indicating cell-wall damage. Spring-back mainly occurred in the non-plasticised region immediately below the heated surface region and elasto-plastic rolling-shear deformation along individual growth rings occurred. The GRO of softwood subjected to thermo-mechanical densification determines if an applied load results in rolling shear-deformation or radial compression. This in turn determines where in the cross-section and when in the process the cells deform and if this deformation occurs below or above the glass-transition temperature.

Place, publisher, year, edition, pages
Walter de Gruyter, 2023
Keywords
densification, digital image correlation, rolling shear, shape-memory, wood compression
National Category
Wood Science Other Mechanical Engineering
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-96487 (URN)10.1515/hf-2023-0004 (DOI)000967647600001 ()2-s2.0-85153381478 (Scopus ID)
Funder
Luleå University of Technology, CT WOOD
Note

Validerad;2023;Nivå 2;2023-06-29 (sofila);

Available from: 2023-04-14 Created: 2023-04-14 Last updated: 2025-01-28Bibliographically approved
4. Hardness of surface-densified wood. Part 1: material or product property?
Open this publication in new window or tab >>Hardness of surface-densified wood. Part 1: material or product property?
2022 (English)In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 76, no 6, p. 503-514Article in journal (Refereed) Published
Abstract [en]

The established methods for testing the hardness of wood are of questionable value for assessing the performance of surface-densified wood, since the density profile beneath the densified surface is an important property that needs to be considered. The purpose of this study was to evaluate the influence of the density profile of surface-densified wood and the hardness test parameters, such as indenter geometry and applied load on the measured hardness. The influence of the density profile varied considerably depending on the hardness test parameters. This can make a comparison of hardness values of surface-densified wood prone to misinterpretation. The selection of hardness test parameters should either be product-specific, or the density profile itself should be used to evaluate the hardness of surface-densified wood. A strong influence of the density profile on the indentation depth development during the hardness tests indicates the possibility of predicting the density profile based on the hardness test methods.

Place, publisher, year, edition, pages
Walter de Gruyter, 2022
Keywords
Brinell hardness, density profiles, ionic liquids, Janka hardness, wood compression
National Category
Wood Science
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-89776 (URN)10.1515/hf-2021-0151 (DOI)000765921500001 ()2-s2.0-85126561094 (Scopus ID)
Funder
Luleå University of Technology, CT Wood
Note

Validerad;2022;Nivå 2;2022-06-29 (sofila)

Available from: 2022-03-22 Created: 2022-03-22 Last updated: 2025-01-28Bibliographically approved
5. Hardness of surface-densified wood. Part 2: prediction of the density profile by hardness measurements
Open this publication in new window or tab >>Hardness of surface-densified wood. Part 2: prediction of the density profile by hardness measurements
2022 (English)In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 76, no 6, p. 515-524Article in journal (Refereed) Published
Abstract [en]

The density profile of surface-densified wood has a major influence on the indentation resistance of the material. A method that can predict the density profile in surface-densified wood from measurements of the indentation in a hardness test was established. The combined information of hardness and density profile is expected to better assess the performance of surface-densified wood. Density profile and hardness test data for surface-densified Scots pine have been subjected to a partial least squares analysis to determine the relationship between the indentation depth measured during a hardness test and the density profile measured by X-ray densitometry. Among seven different hardness tests, which varied in test force and indenter geometry, the Brinell method according to the EN 1534 standard showed the highest correlation between the indentation-versus-time curve and the density profile. The mean absolute error for the prediction of density profiles in an external test set was 5–10%, indicating that the method proposed in this study can be used to replace X-ray densitometry in process control and process design.

Place, publisher, year, edition, pages
Walter de Gruyter, 2022
Keywords
densification, partial least squares regression, wood compression
National Category
Wood Science Other Mechanical Engineering
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-89846 (URN)10.1515/hf-2021-0232 (DOI)000766098800001 ()2-s2.0-85126548618 (Scopus ID)
Funder
Luleå University of Technology, CT WOOD
Note

Validerad;2022;Nivå 2;2022-06-29 (sofila)

Available from: 2022-03-25 Created: 2022-03-25 Last updated: 2025-01-28Bibliographically approved
6. Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images
Open this publication in new window or tab >>Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images
2022 (English)In: European Journal of Wood and Wood Products, ISSN 0018-3768, E-ISSN 1436-736X, Vol. 80, no 5, p. 1121-1133Article in journal (Refereed) Published
Abstract [en]

Over the past decades, the surface densification of solid wood has received increased attention. However, the inhomogeneous density distribution in the densification direction might be a challenge with regard to process control within a large-scale production process, as the density profile governs many relevant properties of surface-densified wood. Currently, the measurement of density profiles relies on sensitive X-ray equipment and is difficult to integrate into an on-line process. Hence, in this study, three machine learning approaches were applied to predict the density profiles of surface-densified Scots pine specimens, only based on visual image acquisition—a technology that is ubiquitous in the wood industry: partial least squares (PLS) regression, artificial neural networks (ANN), and convolutional neural networks (CNN). The machine learning models were trained on images of the specimen cross-sections as input data, and X-ray density profiles as output data. There were 1850 observations, and the model performance was evaluated on external test sets. The models had mean absolute percentage errors of the predicted values between 9 and 18%; the CNN achieving the smallest error (9.24%). A deeper analysis of the data revealed that the ANN approach performed inconsistently between observations. PLS regression predicted the main density peak to a high accuracy but could not model other features. Only the CNN could reliably model the main density peak, wide growth rings, and the important region between the specimen surface and the main density peak. The ability of the models to generalise to untypical new data was improved by augmentation of the training data.

Place, publisher, year, edition, pages
Springer Nature, 2022
National Category
Wood Science
Research subject
Wood Science and Engineering
Identifiers
urn:nbn:se:ltu:diva-91623 (URN)10.1007/s00107-022-01826-2 (DOI)000805899400002 ()2-s2.0-85131522286 (Scopus ID)
Note

Validerad;2022;Nivå 2;2022-09-29 (hanlid)

Available from: 2022-06-20 Created: 2022-06-20 Last updated: 2025-01-28Bibliographically approved

Open Access in DiVA

fulltext(31993 kB)87 downloads
File information
File name FULLTEXT02.pdfFile size 31993 kBChecksum SHA-512
7c0461ebd1a49b45dcd285662ea6d52703302bb05960c414fac6af48fdc61a598c80353cb2ee01e547ab53e5c9300582e25d1f4e29ca8ee91a0f6f072cd3677d
Type fulltextMimetype application/pdf

Authority records

Scharf, Alexander

Search in DiVA

By author/editor
Scharf, Alexander
By organisation
Wood Science and Engineering
Wood Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 88 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 641 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf