Text-based emotion identification goes beyond simple sentiment analysis by capturing emotions in a more nuanced way, akin to shades of gray rather than just positive or negative sentiments. This paper details our experiments with emotion analysis on Bangla text. We collected a corpus of user comments from various social media groups discussing socioeconomic and political topics to identify six emotions: sadness, disgust, surprise, fear, anger, and joy. We evaluated the performance of four widely used machine learning algorithms—RF, DT, k-NN, and SVM—alongside three popular deep learning algorithms—CNNs, LSTM, and Transformer Learning—using TF-IDF feature extraction and word embedding techniques. The results showed that among the machine learning algorithms, DT, RF, k-NN, and SVM achieved accuracy scores of 82%, 84%, 73%, and 83%, respectively. In contrast, the deep learning models CNN and LSTM both achieved higher performance with an accuracy of 85% and 86% respectively. These findings highlight the effectiveness of traditional ML and DL approaches in detecting emotions from Bangla social media texts, indicating significant potential for further advancements in this area.